Monte Carlo Arithmetic: a framework for the statistical analysis of roundo error

Monte Carlo Arithmetic (MCA) is an extension of standard oating-point arithmetic that exploits randomness in basic oating-point operations. MCA uses randomization to implement random rounding | which forces roundoo errors to be randomly distributed | and random unrounding | which randomly extends the inputs of arithmetic operations to arbitrary precision. Random rounding can be used to produce roundoo errors that are truly random and uncorrelated, and that have zero expected bias. Random unrounding detects catastrophic cancellation , which is the primary way that signiicant digits are lost in numerical computation. Randomization also can be used to vary precision dynamically, and to implement inexact values (values known to only a few signiicant digits). Randomization has both theoretical and practical beneets. It has the eeect of transforming any oating-point computation into a Monte Carlo computation, and roundoo analysis into statistical analysis. By running a program multiple times, one directly measures the sensitivity of particular outputs to random perturbations of particular inputs. Also, MCA gives a way to avoid some anomalies of oating-point arithmetic. For example, while oating-point summation is not associative, Monte Carlo summation turns out to bèstatistically associative' up to the standard error of the sum. Generally, it gives a diierent perspective on the study of error.

[1]  Pat H. Sterbenz,et al.  Floating-point computation , 1973 .

[2]  J. Vignes New methods for evaluating the validity of the results of mathematical computations , 1978 .

[3]  J. Neumann,et al.  Numerical inverting of matrices of high order. II , 1951 .

[4]  Nicholas C. Metropolis Analyzed Binary Computing , 1973, IEEE Transactions on Computers.

[5]  P. Morse,et al.  Principles of Numerical Analysis , 1954 .

[6]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[7]  J. Richard Swenson,et al.  Tests of probabilistic models for propagation of roundoff errors , 1966, CACM.

[8]  J. Vignes,et al.  An Efficient Stochastic Method for Round-Off Error Analysis , 1985, Accurate Scientific Computations.

[9]  J. Vignes,et al.  Error Analysis in Computing , 1974, IFIP Congress.

[10]  Françoise Chatelin,et al.  CESTAC, A TOOL FOR A STOCHASTIC ROUND-OFF ERROR ANALYSIS IN SCIENTIFIC COMPUTING , 1986 .

[11]  Jean Vignes,et al.  Review on stochastic approach to round-off error analysis and its applications , 1988 .

[12]  H. Goldstine,et al.  The Computer from Pascal to von Neumann , 1974 .

[13]  Herman Heine Goldstine,et al.  A History of Numerical Analysis from the 16th through the 19th Century. , 1976 .

[14]  David G. Hough,et al.  A Proposed Radix- and Word-length-independent Standard for Floating-point Arithmetic , 1984, IEEE Micro.

[15]  Andrew C. Callahan Random rounding: Some principles and applications , 1976, ICASSP.

[16]  Werner Buchholz,et al.  Planning a Computer System: Project Stretch , 1962 .

[17]  E. R. Cohen An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1998 .

[18]  K. F. Gauss,et al.  Theoria combinationis observationum erroribus minimis obnoxiae , 1823 .

[19]  Brad Alan Pierce Applications of randomization to floating-point arithmetic and to linear systems solutions , 1997 .

[20]  William J. Cody,et al.  Static and Dynamic Numerical Characteristics of Floating-Point Arithmetic , 1973, IEEE Transactions on Computers.

[21]  George E. Forsythe,et al.  Reprint of a Note on Rounding-Off Errors , 1959 .

[22]  Philip E. Gill,et al.  Numerical Linear Algebra and Optimization , 1991 .

[23]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[24]  J. Halton A Retrospective and Prospective Survey of the Monte Carlo Method , 1970 .

[25]  Harry D. Huskey,et al.  On the precision of a certain procedure of numerical integration , 1949 .

[26]  Stephen M. Stigler,et al.  The History of Statistics: The Measurement of Uncertainty before 1900 , 1986 .

[27]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Jean-Michel Muller,et al.  Introduction to the Special Issue: "Real Numbers and Computers" , 1995, J. Univers. Comput. Sci..

[30]  J. H. Wilkinson,et al.  Reliable Numerical Computation. , 1992 .

[31]  Jean Vignes,et al.  A stochastic arithmetic for reliable scientific computation , 1993 .

[32]  William Kahan,et al.  The improbability of probabilistic error analyses for numerical computations , 1996 .

[33]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[34]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[35]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[36]  L. J. Comrie,et al.  Mathematical Tables and Other Aids to Computation. , 1946 .

[37]  William Kahan,et al.  Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic , 1996 .

[38]  N. Metropolis THE BEGINNING of the MONTE CARLO METHOD , 2022 .

[39]  A. Turing ROUNDING-OFF ERRORS IN MATRIX PROCESSES , 1948 .

[40]  J. Vignes,et al.  Validation of results of collocation methods for ODEs with the CADNA library , 1996 .

[41]  J. H. Wilkinson Modern Error Analysis , 1971 .

[42]  数理科学社,et al.  数理科学 = Mathematical sciences , 1963 .

[43]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[44]  R. P. Boas Capitalizaton of language references , 1966, CACM.

[45]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[46]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[47]  M. Porte,et al.  Methode numerique de detection de la singularite d'une matrice , 1974 .

[48]  William Kahan,et al.  A Survey of Error Analysis , 1971, IFIP Congress.