Multidimensional discretization of the stationary quantum drift-diffusion model for ultrasmall MOSFET structures

This paper describes a new approach to construct a multidimensional discretization scheme of quantum drift-diffusion (QDD) model (or density gradient model) arising in MOSFET structures. The discretization is performed for the stationary QDD equations replaced by an equivalent form, employing an exponential transformation of variables. A multidimensional discretization scheme is constructed by making use of an exponential-fitting method in a class of conservative difference schemes, applying the finite-volume method, which leads to a consistent generalization of the Scharfetter-Gummel expression to the nonlinear Sturm-Liouville type equation. The discretization method is evaluated in a variety of MOSFET structures, including a double-gate MOSFET with thin body layer. The discretization method provides numerical stability and accuracy for carrier transport simulations with quantum confinement effects in ultrasmall MOSFET structures.

[1]  G. Iafrate,et al.  Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.

[2]  M. Ancona,et al.  Macroscopic physics of the silicon inversion layer. , 1987, Physical review. B, Condensed matter.

[3]  D. Rose,et al.  Some errors estimates for the box method , 1987 .

[4]  Andreas Unterreiter,et al.  The Stationary Current { VoltageCharacteristics of the Quantum DriftDi usion ModelRen , 1999 .

[5]  B. F. Oscillator Large-Signal Analysis of a Silicon Read Diode Oscillator , 1969 .

[6]  G. Marchuk Methods of Numerical Mathematics , 1982 .

[7]  Mario G. Ancona,et al.  Nonlinear discretization scheme for the density-gradient equations , 2000, 2000 International Conference on Simulation Semiconductor Processes and Devices (Cat. No.00TH8502).

[8]  S. Selberherr MOS device modeling at 77 K , 1989 .

[9]  Francis T. S. Yu,et al.  Legacy of optical information processing , 2001, SPIE Optics + Photonics.

[10]  H.-S. Philip Wong Beyond the conventional transistor , 2002, IBM J. Res. Dev..

[11]  W. Fichtner,et al.  Quantum device-simulation with the density-gradient model on unstructured grids , 2001 .

[12]  Zhiping Yu,et al.  Multi-dimensional Quantum Effect Simulation Using a Density-Gradient Model and Script-Level Programming Techniques , 1998 .

[13]  Robert W. Dutton,et al.  Density-gradient analysis of MOS tunneling , 2000 .

[14]  Zhiping Yu,et al.  Macroscopic Quantum Carrier Transport Modeling , 2001 .

[15]  Mario G. Ancona Finite-Difference Schemes for the Density-Gradient Equations , 2002 .

[16]  Carl L. Gardner,et al.  The Quantum Hydrodynamic Model for Semiconductor Devices , 1994, SIAM J. Appl. Math..

[17]  R. Mickevicius,et al.  Simulations of ultrathin, ultrashort double-gated MOSFETs with the density gradient transport model , 2002, International Conferencre on Simulation of Semiconductor Processes and Devices.

[18]  Andrew R. Brown,et al.  Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: a 3-D density-gradient simulation study , 2001 .

[19]  Shinji Odanaka,et al.  SMART-II: a three-dimensional CAD model for submicrometer MOSFET's , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..