Human Interaction Recognition with a Network of Dynamic Probabilistic Models

In this paper, we propose a novel method for analyzing human interactions based on the walking trajectories of human subjects. Our principal assumption is that an interaction episode is composed of meaningful smaller unit interactions, which we call 'sub-interactions.' The whole interactions are represented by an ordered concatenation or a network of sub-interaction models. From the experiments, we could confirm the effectiveness and robustness of the proposed method by analyzing the inner workings of an interaction network and comparing the performance with other previous approaches.