Nano-Mg(OH)2-induced proliferation inhibition and dysfunction of human umbilical vein vascular endothelial cells through caveolin-1-mediated endocytosis

[1]  Y. Li,et al.  Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway , 2014, International journal of nanomedicine.

[2]  M. Slevin,et al.  ENDOTHELIAL DYSFUNCTION AND INFLAMMATION , 2014 .

[3]  G. Jiang,et al.  Cell rescue by nanosequestration: reduced cytotoxicity of an environmental remediation residue, Mg(OH)2 nanoflake/Cr(VI) adduct. , 2014, Environmental science & technology.

[4]  L. Rochette,et al.  Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? , 2013, Pharmacology & therapeutics.

[5]  A. Gesquiere,et al.  Caveolae-mediated endocytosis of conjugated polymer nanoparticles. , 2013, Macromolecular bioscience.

[6]  Pedro Ramos-Cabrer,et al.  Liposomes and nanotechnology in drug development: focus on neurological targets , 2013, International journal of nanomedicine.

[7]  A. Malik,et al.  Nanoparticles squeezing across the blood-endothelial barrier via caveolae. , 2013, Therapeutic delivery.

[8]  Jun-Ying Miao,et al.  The effect of novel magnetic nanoparticles on vascular endothelial cell function in vitro and in vivo. , 2012, Journal of hazardous materials.

[9]  G. Murdaca,et al.  Endothelial dysfunction in rheumatic autoimmune diseases. , 2012, Atherosclerosis.

[10]  G. Vazquez,et al.  On the role of endothelial TRPC3 channels in endothelial dysfunction and cardiovascular disease. , 2012, Cardiovascular & hematological agents in medicinal chemistry.

[11]  M. Strano,et al.  Nanoengineered glycan sensors enabling native glycoprofiling for medicinal applications: towards profiling glycoproteins without labeling or liberation steps. , 2012, Chemical Society reviews.

[12]  A. Lochner,et al.  Endothelial dysfunction: the early predictor of atherosclerosis , 2012, Cardiovascular journal of Africa.

[13]  Feng Huang,et al.  A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water. , 2012, Nanoscale.

[14]  K. Node,et al.  Endothelial dysfunction as a cellular mechanism for vascular failure. , 2012, American journal of physiology. Heart and circulatory physiology.

[15]  Adnan M. Bakar,et al.  Isoflurane Protects Against Human Endothelial Cell Apoptosis by Inducing Sphingosine Kinase-1 via ERK MAPK , 2012, International journal of molecular sciences.

[16]  G. Sowa Caveolae, Caveolins, Cavins, and Endothelial Cell Function: New Insights , 2012, Front. Physio..

[17]  Daniel Pardo,et al.  eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. , 2011, The Journal of endocrinology.

[18]  T. Thum,et al.  Critical role of the nitric oxide/reactive oxygen species balance in endothelial progenitor dysfunction. , 2011, Antioxidants & redox signaling.

[19]  E. Wang,et al.  Nanostructured materials for water desalination , 2011, Nanotechnology.

[20]  B. Wang,et al.  Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. , 2011, Toxicology letters.

[21]  Guibin Jiang,et al.  Steering carbon nanotubes to scavenger receptor recognition by nanotube surface chemistry modification partially alleviates NFκB activation and reduces its immunotoxicity. , 2011, ACS nano.

[22]  C. Vlachopoulos,et al.  Relationship of asymmetric dimethylarginine with penile Doppler ultrasound parameters in men with vasculogenic erectile dysfunction. , 2011, European urology.

[23]  Yongjing Wang,et al.  Recycling MgOH2 nanoadsorbent during treating the low concentration of CrVI. , 2011, Environmental science & technology.

[24]  Steffen Loft,et al.  Pulmonary exposure to carbon black nanoparticles and vascular effects , 2010, Particle and Fibre Toxicology.

[25]  J. Rutledge,et al.  The vascular contribution to Alzheimer's disease. , 2010, Clinical science.

[26]  D. Santoro,et al.  Endothelial dysfunction in chronic renal failure. , 2010, Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation.

[27]  D. Atochin,et al.  Endothelial nitric oxide synthase transgenic models of endothelial dysfunction , 2010, Pflügers Archiv - European Journal of Physiology.

[28]  M. Toborek,et al.  The role of caveolae in endothelial cell dysfunction with a focus on nutrition and environmental toxicants , 2010, Journal of cellular and molecular medicine.

[29]  A. Karsan,et al.  Endothelial Dysfunction and Inflammation , 2010 .

[30]  M. Petrova,et al.  Endothelial dysfunction and repair in Alzheimer-type neurodegeneration: neuronal and glial control. , 2010, Journal of Alzheimer's disease : JAD.

[31]  T. Michel,et al.  Cellular signaling and NO production , 2010, Pflügers Archiv - European Journal of Physiology.

[32]  Bing Yan,et al.  Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. , 2009, Nano letters.

[33]  Zhong Pei,et al.  A novel marine compound xyloketal B protects against oxidized LDL-induced cell injury in vitro. , 2009, Biochemical pharmacology.

[34]  P. Midgley,et al.  Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. , 2009, Biomaterials.

[35]  K. Swärd,et al.  The role of caveolin‐1 in cardiovascular regulation , 2009, Acta physiologica.

[36]  O. Sagol,et al.  Differential expression of Caveolin-1 in hepatocellular carcinoma: correlation with differentiation state, motility and invasion , 2009, BMC Cancer.

[37]  Benjamin Gilbert,et al.  Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. , 2008, ACS nano.

[38]  Bernhard Hennig,et al.  Alumina nanoparticles induce expression of endothelial cell adhesion molecules. , 2008, Toxicology letters.

[39]  R. Henning,et al.  Caveolae and endothelial dysfunction: filling the caves in cardiovascular disease. , 2008, European journal of pharmacology.

[40]  J. Bauersachs,et al.  Endothelial dysfunction in heart failure. , 2008, Pharmacological reports : PR.

[41]  M. Khazaei,et al.  The pharmacology of particulate matter air pollution-induced cardiovascular dysfunction. , 2007, Pharmacology & therapeutics.

[42]  Yan Wang,et al.  Color removal from dye-containing wastewater by magnesium chloride. , 2007, Journal of environmental management.

[43]  C. Mineo,et al.  Circulating cardiovascular disease risk factors and signaling in endothelial cell caveolae. , 2006, Cardiovascular research.

[44]  Qin Wu,et al.  Protective effects of Ginkgo biloba leaf extract on aluminum-induced brain dysfunction in rats. , 2005, Life sciences.

[45]  G. Vallega,et al.  Dissociation of Insulin Receptor Expression and Signaling from Caveolin-1 Expression* , 2005, Journal of Biological Chemistry.

[46]  S. Kawashima,et al.  Dysfunction of endothelial nitric oxide synthase and atherosclerosis. , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[47]  C James Kirkpatrick,et al.  Effects of nano-scaled particles on endothelial cell function in vitro: Studies on viability, proliferation and inflammation , 2004, Journal of materials science. Materials in medicine.

[48]  Ernesto L. Schiffrin,et al.  Endothelial dysfunction. , 2004, Journal of the American Society of Nephrology : JASN.

[49]  D. Kereiakes,et al.  Endothelial dysfunction. , 2003, Circulation.

[50]  G. Stel,et al.  A new model of human aortic endothelial cells in vitro. , 2000, Biochimie.

[51]  R. D. Rudic,et al.  In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation , 2000, Nature Medicine.

[52]  U. Förstermann,et al.  Nitric oxide in the pathogenesis of vascular disease , 2000, The Journal of pathology.

[53]  A. Quyyumi Endothelial function in health and disease: new insights into the genesis of cardiovascular disease. , 1998, The American journal of medicine.

[54]  G. Firth A study of the potential application of bleomycin entrapped within liposomes in the treatment of human cerebral gliomas , 1986 .

[55]  B. Zetter,et al.  Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein , 1984, The Journal of cell biology.

[56]  E. Jaffe,et al.  Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. , 1973, The Journal of clinical investigation.