Bayesian optical flow with uncertainty quantification

Optical flow refers to the visual motion observed between two consecutive images. Since the degree of freedom is typically much larger than the constraints imposed by the image observations, the straightforward formulation of optical flow inference is an ill-posed problem. By setting some type of additional “regularity” constraints, classical approaches formulate a well-posed optical flow inference problem in the form of a parameterized set of variational equations. In this work we build a mathematical connection, focused on optical flow methods, between classical variational optical flow approaches and Bayesian statistical inversion. A classical optical flow solution is in fact identical to a maximum a posteriori estimator under the assumptions of linear model with additive independent Gaussian noise and a Gaussian prior distribution. Unlike classical approaches, the statistical inversion approach to optical flow estimation not only allows for “point” estimates, but also provides a distribution of solutions which can be used for ensemble estimation and in particular uncertainty quantification.

[1]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[2]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .

[3]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[4]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[5]  Giannis K. Chantas,et al.  Variational-Bayes Optical Flow , 2014, Journal of Mathematical Imaging and Vision.

[6]  Johnathan M. Bardsley,et al.  Gaussian Markov random field priors for inverse problems , 2013 .

[7]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[8]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[9]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[10]  Aaron Luttman,et al.  A Stream Function Approach to Optical Flow with Applications to Fluid Transport Dynamics , 2011 .

[11]  E. Bollt,et al.  A Lagged Diffusivity Method for Computing Total Variation Regularized Fluid Flow , 2013 .

[12]  Damien Garcia,et al.  A Proof of Convergence of the Horn-Schunck Optical Flow Algorithm in Arbitrary Dimension , 2014, SIAM J. Imaging Sci..

[13]  Scott A. Vander Wiel,et al.  Los Alamos National Laboratory Statistical Sciences Group , 2012 .

[14]  Isabelle Herlin,et al.  Optical Flow and Phase Portrait Methods for Environmental Satellite Image Sequences , 1996, ECCV.

[15]  Jean-Michel Morel,et al.  A Nonlocal Bayesian Image Denoising Algorithm , 2013, SIAM J. Imaging Sci..

[16]  E. Bollt,et al.  A framework for estimating potential fluid flow from digital imagery. , 2013, Chaos.

[17]  Kahlouche Souhila,et al.  Optical Flow Based Robot Obstacle Avoidance , 2007 .

[18]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[19]  Johnathan M. Bardsley,et al.  MCMC-Based Image Reconstruction with Uncertainty Quantification , 2012, SIAM J. Sci. Comput..

[20]  E. Bollt,et al.  A Multi-time Step Method to Compute Optical Flow with Scientific Priors for Observations of a Fluidic System , 2014 .

[21]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[22]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[23]  Rachid Deriche,et al.  Computing Optical Flow via Variational Techniques , 1999, SIAM J. Appl. Math..

[24]  Mlnoru Slotani Tolerance regions for a multivariate normal population , 1964 .

[25]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[26]  D. M. Titterington,et al.  A Study of Methods of Choosing the Smoothing Parameter in Image Restoration by Regularization , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Matthias W. Seeger,et al.  Large Scale Bayesian Inference and Experimental Design for Sparse Linear Models , 2011, SIAM J. Imaging Sci..

[28]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[29]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[30]  A. Tikhonov,et al.  Numerical Methods for the Solution of Ill-Posed Problems , 1995 .