Memristive and neuromorphic behavior in a LixCoO2 nanobattery
暂无分享,去创建一个
D. Alamarguy | O. Schneegans | V. H. Mai | A. Moradpour | P. Auban Senzier | C. Pasquier | K. Wang | M. J. Rozenberg | J. Giapintzakis | C. N. Mihailescu | C. M. Orfanidou | E. Svoukis | A. Breza | Ch B. Lioutas | S. Franger | A. Revcolevschi | T. Maroutian | P. Lecoeur | P. Aubert | G. Agnus | R. Salot | P. A. Albouy | R. Weil | K. March | F. Jomard | P. Chrétien | P. Albouy | M. Rozenberg | D. Alamarguy | A. Revcolevschi | S. Franger | P. Chrétien | R. Salot | E. Svoukis | O. Schneegans | J. Giapintzakis | P. Lecoeur | F. Jomard | G. Agnus | C. Lioutas | P. Aubert | R. Weil | K. March | T. Maroutian | C. Pasquier | V. Mai | C. Mihăilescu | P. Senzier | A. Moradpour | K. Wang | C. Orfanidou | A. Breza | V. H. Mai | Pascal Aubert | Philippe Lecoeur | Alec Moradpour | Kang Wang | M. Rozenberg | Sylvain Franger | Raphaël Weil | Katia March
[1] S. Ha,et al. Adaptive oxide electronics: A review , 2011 .
[2] Jan van den Hurk,et al. Nanobatteries in redox-based resistive switches require extension of memristor theory , 2013, Nature Communications.
[3] C. Hwang,et al. Resistive switching memory: observations with scanning probe microscopy. , 2011, Nanoscale.
[4] B. Alberts,et al. Molecular Biology of the Cell (Fifth Edition) , 2008 .
[5] H. Markram,et al. Information Processing with Frequency-Dependent Synaptic Connections , 1998, Neurobiology of Learning and Memory.
[6] Wei Lu,et al. Short-term Memory to Long-term Memory Transition in a Nanoscale Memristor , 2022 .
[7] Byoungil Lee,et al. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.
[8] Gregory S. Snider,et al. Spike-timing-dependent learning in memristive nanodevices , 2008, 2008 IEEE International Symposium on Nanoscale Architectures.
[9] R. Waser,et al. Nanoionics-based resistive switching memories. , 2007, Nature materials.
[10] D. Stewart,et al. The missing memristor found , 2008, Nature.
[11] Y. Chueh,et al. Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate. , 2013, ACS applied materials & interfaces.
[12] R. Waser,et al. Generic relevance of counter charges for cation-based nanoscale resistive switching memories. , 2013, ACS nano.
[13] C. Delmas,et al. Evidence for structural defects in non-stoichiometric HT-LiCoO2 : electrochemical, electronic properties and 7Li NMR studies , 2000 .
[14] Marcelo Rozenberg. Resistive switching , 2011, Scholarpedia.
[15] Donald R. Sadoway,et al. Electrochemically controlled transport of lithium through ultrathin SiO 2 , 2005 .
[16] Jian Shi,et al. A correlated nickelate synaptic transistor , 2013, Nature Communications.
[17] J. Davies,et al. Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.
[18] Yiwei Liu,et al. Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins , 2013, Scientific Reports.
[19] M. Ziegler,et al. An Electronic Version of Pavlov's Dog , 2012 .
[20] H. Hwang,et al. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device , 2011, Nanotechnology.
[21] A. Revcolevschi,et al. NaxCoO2: A New Opportunity for Rewritable Media? , 2007 .
[22] M Marsi,et al. A microscopic view on the Mott transition in chromium-doped V(2)O(3). , 2010, Nature communications.
[23] Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol , 2012 .
[24] B. L. Weeks,et al. Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy. , 2005, Langmuir : the ACS journal of surfaces and colloids.
[25] T. Hasegawa,et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.
[26] Stephane Levasseur,et al. The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study , 1999 .
[27] A. Sawa. Resistive switching in transition metal oxides , 2008 .
[28] R. Dittmann,et al. Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.
[29] S. Kikkawa,et al. Electronic phase diagram of the layered cobalt oxide system LixCoO2 (0.0≤x≤1.0) , 2009, 0909.3556.
[30] Daesung Park,et al. Scaling Potential of Local Redox Processes in Memristive SrTiO $_{3}$ Thin-Film Devices , 2012, Proceedings of the IEEE.
[31] Seema M. Jadhav,et al. Dip Pen Nanolithography , 2012 .
[32] J. Dahn,et al. Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2 , 1992 .
[33] A. Revcolevschi,et al. Resistive Switching Phenomena in LixCoO2 Thin Films , 2011, Advanced materials.
[34] B. Maynor,et al. Electrochemical AFM "dip-pen" nanolithography. , 2001, Journal of the American Chemical Society.
[35] M. Nishizawa,et al. Irreversible conductivity change of Li1–xCoO2 on electrochemical lithium insertion/extraction, desirable for battery applications , 1998 .
[36] Wei Yang Lu,et al. Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.