The joint center for energy storage research: A new paradigm for battery research and development

The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

[1]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[2]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[3]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[4]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[5]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[6]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[7]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[8]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[9]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[10]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[11]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[12]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[13]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[14]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[15]  Zhan Lin,et al.  Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries , 2011 .

[16]  Pierre-Louis Taberna,et al.  Non-Aqueous Li-Based Redox Flow Batteries , 2012 .

[17]  Robert W. Black,et al.  Non‐Aqueous and Hybrid Li‐O2 Batteries , 2012 .

[18]  Fikile R. Brushett,et al.  An All‐Organic Non‐aqueous Lithium‐Ion Redox Flow Battery , 2012 .

[19]  Allen G. Oliver,et al.  Electrolyte roadblocks to a magnesium rechargeable battery , 2012 .

[20]  M. Stanley Whittingham,et al.  History, Evolution, and Future Status of Energy Storage , 2012, Proceedings of the IEEE.

[21]  C. Low,et al.  Progress in redox flow batteries, remaining challenges and their applications in energy storage , 2012 .

[22]  Bin Li,et al.  Recent Progress in Redox Flow Battery Research and Development , 2012 .

[23]  Guangyuan Zheng,et al.  A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage , 2013 .

[24]  Yuyan Shao,et al.  Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. , 2013, Nano letters.

[25]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[26]  Khalil Amine,et al.  Disproportionation in Li-O2 batteries based on a large surface area carbon cathode. , 2013, Journal of the American Chemical Society.

[27]  James E. Evans,et al.  Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. , 2013, Nano letters.

[28]  L. Nazar,et al.  New approaches for high energy density lithium-sulfur battery cathodes. , 2013, Accounts of chemical research.

[29]  Zheng Li,et al.  Electronic Supplementary Information Aqueous Semi-Solid Flow Cell: Demonstration and Analysis , 2013 .

[30]  Jun Liu,et al.  Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid , 2013 .

[31]  Yuyan Shao,et al.  Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance , 2013, Scientific Reports.

[32]  John B. Goodenough,et al.  The Li‐Ion Rechargeable Battery: A Perspective , 2013 .

[33]  Jeffrey A. Kowalski,et al.  Electrolyte Development for Non-Aqueous Redox Flow Batteries Using a High-Throughput Screening Platform , 2014 .

[34]  Rajeev S. Assary,et al.  Toward a Molecular Understanding of Energetics in Li–S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study , 2014 .

[35]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[36]  Kevin G. Gallagher,et al.  Quantifying the promise of lithium–air batteries for electric vehicles , 2014 .

[37]  Yi Cui,et al.  Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface , 2014, Nature Communications.

[38]  Khalil Amine,et al.  Rechargeable lithium batteries and beyond: Progress, challenges, and future directions , 2014 .

[39]  Yi Cui,et al.  Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes , 2014 .

[40]  K. Lau,et al.  Structure and Stability of Lithium Superoxide Clusters and Relevance to Li-O2 Batteries. , 2014, The journal of physical chemistry letters.

[41]  Kristin A. Persson,et al.  Diffusional motion of redox centers in carbonate electrolytes. , 2014, The Journal of chemical physics.

[42]  Kyle C. Smith,et al.  Maximizing Energetic Efficiency in Flow Batteries Utilizing Non-Newtonian Fluids , 2014 .

[43]  K. Thornton,et al.  Model for anodic film growth on aluminum with coupled bulk transport and interfacial reactions. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[44]  A. Gewirth,et al.  Investigating the Reversibility of in Situ Generated Magnesium Organohaloaluminates for Magnesium Deposition and Dissolution , 2014 .

[45]  Kevin G. Gallagher,et al.  Fraction of the theoretical specific energy achieved on pack level for hypothetical battery chemistries , 2014 .

[46]  Yi Cui,et al.  High-capacity Li2S–graphene oxide composite cathodes with stable cycling performance , 2014 .

[47]  Ilke Arslan,et al.  Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. , 2014, Chemical communications.

[48]  N. Balsara,et al.  Morphology-Conductivity Relationship of Single-Ion-Conducting Block Copolymer Electrolytes for Lithium Batteries. , 2014, ACS macro letters.

[49]  B. L. Mehdi,et al.  Formation of interfacial layer and long-term cyclability of Li-O₂ batteries. , 2014, ACS applied materials & interfaces.

[50]  David G. Kwabi,et al.  Materials challenges in rechargeable lithium-air batteries , 2014 .

[51]  Nav Nidhi Rajput,et al.  Solvation structure and energetics of electrolytes for multivalent energy storage. , 2014, Physical chemistry chemical physics : PCCP.

[52]  Jun Liu,et al.  Molecular structure and stability of dissolved lithium polysulfide species. , 2014, Physical chemistry chemical physics : PCCP.

[53]  James E. Evans,et al.  Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. , 2014, Nano letters.

[54]  Dipan Kundu,et al.  Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries , 2014, Nature Communications.

[55]  Donald J. Siegel,et al.  Enhanced Charge Transport in Amorphous Li2O2 , 2014 .

[56]  Jun Lu,et al.  Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li–O2 Battery , 2014 .

[57]  Kevin G. Gallagher,et al.  Pathways to Low Cost Electrochemical Energy Storage: A Comparison of Aqueous and Nonaqueous Flow Batteries , 2014 .

[58]  Gareth H McKinley,et al.  Polysulfide flow batteries enabled by percolating nanoscale conductor networks. , 2014, Nano letters.

[59]  Fikile R. Brushett,et al.  Reduction potential predictions of some aromatic nitrogen-containing molecules , 2014 .