Asymptotically Equivalent Sequences of Matrices and Hermitian Block Toeplitz Matrices With Continuous Symbols: Applications to MIMO Systems

For the engineering community, Gray's tutorial monograph on Toeplitz and circulant matrices has been, and remains, the best elementary introduction to the Szego theory on large Toeplitz matrices. In this paper, the most important results of the cited monograph are generalized to block Toeplitz (BT) matrices by maintaining the same mathematical tools used by Gray, that is, by using asymptotically equivalent sequences of matrices. As applications of these results, the geometric minimum mean square error (MMSE) for both an infinite-length multivariate linear predictor and an infinite-length decision feedback equalizer (DFE) for multiple-input-multiple-output (MIMO) channels, are obtained as a limit of the corresponding finite-length cases. Similarly, a short derivation of the well-known capacity of a time-invariant MIMO Gaussian channel with intersymbol interference (ISI) and fixed input covariance matrix is also presented.

[1]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[2]  S. Serra Capizzano,et al.  Distribution results on the algebra generated by Toeplitz sequences: a finite-dimensional approach , 2001 .

[3]  Robert M. Gray,et al.  On the asymptotic eigenvalue distribution of Toeplitz matrices , 1972, IEEE Trans. Inf. Theory.

[4]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[5]  F. R. Gantmakher The Theory of Matrices , 1984 .

[6]  W. Rudin Principles of mathematical analysis , 1964 .

[7]  Paolo Tilli,et al.  On unitarily invariant norms of matrix-valued linear positive operators , 2002 .

[8]  S. Capizzano The spectral approximation of multiplication operators via asymptotic (structured) linear algebra , 2005, math/0512457.

[9]  Pedro M. Crespo,et al.  Mass concentration in quasicommutators of Toeplitz matrices , 2007 .

[10]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[11]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[12]  L. H. Brandenburg,et al.  Capacity of the Gaussian channel with memory: The multivariate case , 1974 .

[13]  Jean Pierre Delmas,et al.  Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO channel identification , 2001, IEEE Trans. Inf. Theory.

[14]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[15]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .

[16]  Pedro M. Crespo,et al.  On the Elementwise Convergence of Continuous Functions of Hermitian Banded Toeplitz Matrices , 2007, IEEE Transactions on Information Theory.

[17]  Paolo Tilli,et al.  Asymptotic Spectra of Hermitian Block Toeplitz Matrices and Preconditioning Results , 2000, SIAM J. Matrix Anal. Appl..

[18]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[19]  Robert M. Gray,et al.  Toeplitz And Circulant Matrices: A Review (Foundations and Trends(R) in Communications and Information Theory) , 2006 .

[20]  Paolo Tilli,et al.  A note on the spectral distribution of toeplitz matrices , 1998 .

[21]  A. Böttcher,et al.  Functions of banded Hermitian block Toeplitz matrices in signal processing , 2007 .

[22]  A. Böttcher,et al.  Notes on the asymptotic behavior of block TOEPLITZ matrices and determinants , 1980 .

[23]  Thomas M. Cover,et al.  Elements of Information Theory: Cover/Elements of Information Theory, Second Edition , 2005 .

[24]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[25]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[26]  Nirmal K. Bose,et al.  Asymptotic Eigenvalue Distribution of Block-Toeplitz Matrices , 1998, IEEE Trans. Inf. Theory.

[27]  Ali H. Sayed,et al.  The finite-length multi-input multi-output MMSE-DFE , 2000, IEEE Trans. Signal Process..

[28]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .