On quantum and probabilistic communication: Las Vegas and one-way protocols

We investigate the power of quantum communication protocols compared to classical probabilistic protocols. In our first result we describe a total Boolean function that has a quantum Las Vegas protocol communicating at most O(N 1°/11+~) qubits for all e > 0, while any classical probabilistic protocol (with bounded error) needs ~(N/log N) bits. Then we investigate quantum one-way communication complexity. First we show tha t the VC-dimension lower bound on one-way probabilist ic communication of [26] holds for quantum protocols, too. Then we prove that for oneway protocols computing total functions quantum Las Vegas communication is asymptotical ly as efficient as exact quantum communication, which is exactly as efficient as determinist ic communication. We describe applications of the lower bounds for one-way communication complexity to quantum finite au tomata and quantum formulae.

[1]  R. Cleve,et al.  SUBSTITUTING QUANTUM ENTANGLEMENT FOR COMMUNICATION , 1997, quant-ph/9704026.

[2]  Chris Adami,et al.  Information theory of quantum entanglement and measurement , 1998 .

[3]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[4]  Juraj Hromkovic,et al.  Communication Complexity and Parallel Computing , 1997, Texts in Theoretical Computer Science An EATCS Series.

[5]  Ran Raz,et al.  Exponential separation of quantum and classical communication complexity , 1999, STOC '99.

[6]  Jaikumar Radhakrishnan,et al.  The communication complexity of pointer chasing: applications of entropy and sampling , 1999, STOC '99.

[7]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[8]  Hartmut Klauck,et al.  On the Size of Probabilistic Formulae , 1997, ISAAC.

[9]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[10]  Amnon Ta-Shma,et al.  Classical versus quantum communication complexity , 1999, SIGA.

[11]  Ronald de Wolf,et al.  Bounds for small-error and zero-error quantum algorithms , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[12]  Nicolas J. Cerf,et al.  2 20 J an 1 99 7 Quantum information theory of entanglement and measurement ? , 1997 .

[13]  Andris Ambainis,et al.  Dense quantum coding and a lower bound for 1-way quantum automata , 1998, STOC '99.

[14]  Noam Nisan,et al.  On Randomized One-round Communication Complexity , 1995, STOC '95.

[15]  Zvi Galil,et al.  Lower bounds on communication complexity , 1984, STOC '84.

[16]  Bala Kalyanasundaram,et al.  The Probabilistic Communication Complexity of Set Intersection , 1992, SIAM J. Discret. Math..

[17]  Rüdiger Reischuk,et al.  On different modes of communication , 1988, STOC '88.

[18]  Farrokh Vatan,et al.  An Almost-Quadratic Lower Bound for Quantum Formula Size , 1999, ArXiv.

[19]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[20]  Ronald de Wolf,et al.  Communication complexity lower bounds by polynomials , 1999, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[21]  Juraj Hromkovic,et al.  Nondeterministic communication with a limited number of advice bits , 1996, STOC '96.

[22]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[23]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[24]  Georg Schnitger,et al.  Las Vegas Versus Determinism for One-way Communication Complexity, Finite Automata, and Polynomial-time Computations , 1997, STACS.

[25]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[26]  Hartmut Klauck,et al.  Lower bounds for computation with limited nondeterminism , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).

[27]  Noam Nisan,et al.  Rounds in communication complexity revisited , 1991, STOC '91.

[28]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[29]  Paul Beame,et al.  Randomized versus nondeterministic communication complexity , 1992, STOC '92.

[30]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[31]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[32]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[33]  Michelle Pal,et al.  Communication Complexity and Parallel Computing , 1999, IEEE Concurrency.

[34]  John Preskill,et al.  Lecture notes on quantum information and quantum computation~ http://www , 1998 .