A note on invariants and entanglements

Quantum entanglements are studied in terms of the invariants under local unitary transformations. A generalized formula of concurrence for N-dimensional quantum systems is presented. This generalized concurrence has potential applications in studying separability and calculating the entanglement of formation for high-dimensional mixed quantum states.

[1]  J. Jost,et al.  Entanglement of formation for a class of quantum states , 2003, quant-ph/0304095.

[2]  Ashish V. Thapliyal,et al.  Rank two bipartite bound entangled states do not exist , 1999, Theor. Comput. Sci..

[3]  S. Fei,et al.  Separability of rank two quantum states , 2001, quant-ph/0109089.

[4]  S. Fei,et al.  Teleportation of general finite-dimensional quantum systems , 2000, quant-ph/0012035.

[5]  Michael D. Westmoreland,et al.  Relative entropy in quantum information theory , 2000, quant-ph/0004045.

[6]  M. Wolf,et al.  Bell’s inequalities for states with positive partial transpose , 1999, quant-ph/9910063.

[7]  V. Vedral,et al.  Radiative tail of realistic rotating gravitational collapse , 1999, Physical review letters.

[8]  M. Horodecki,et al.  Limits for entanglement measures. , 1999, Physical review letters.

[9]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[10]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[11]  S. Popescu,et al.  Multi-particle entanglement , 1997, quant-ph/9711016.

[12]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[13]  M. Plenio,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[14]  N. Gisin,et al.  OPTIMAL EAVESDROPPING IN QUANTUM CRYPTOGRAPHY. I. INFORMATION BOUND AND OPTIMAL STRATEGY , 1997 .

[15]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[16]  K. Jacobs,et al.  Statistical Inference, Distinguishability of Quantum States, And Quantum Entanglement , 1997, quant-ph/9703025.

[17]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[18]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[19]  Pérès,et al.  Separability Criterion for Density Matrices. , 1996, Physical review letters.

[20]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[22]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[23]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .