Visualizing Users, User Communities, and Usage Trends in Complex Information Systems Using Implicit Rating Data

Research on personalization, including recommender systems, focuses on applications such as in online shopping malls and simple information systems. These systems consider user profile and item information obtained from data explicitly entered by users. There it is possible to classify items involved and to personalize based on a direct mapping from user or user group to item or item group. However, in complex, dynamic, and professional information systems, such as digital libraries, additional capabilities are needed to achieve personalization to support their distinctive features: large numbers of digital objects, dynamic updates, sparse rating data, biased rating data on specific items, and challenges in getting explicit rating data from users. For this reason, more research on implicit rating data is recommended, because it is easy to obtain, suffers less from terminology issues, is more informative, and contains more user-centered information. In previous reports on my doctoral work, I discussed collecting, storing, processing, and utilizing implicit rating data of digital libraries for analysis and decision support. This dissertation presents a visualization tool, VUDM (Visual User-model Data Mining tool), utilizing implicit rating data, to demonstrate the effectiveness of implicit rating data in characterizing users, user communities, and usage trends of digital libraries. The results of user studies, performed both with typical end-users and with library experts, to test the usefulness of VUDM, support that implicit rating data is useful and can be utilized for digital library analysis software, so that both end users and experts can benefit.

[1]  David M. Nichols,et al.  DEBORA: Developing an Interface to Support Collaboration in a Digital Library , 2000, ECDL.

[2]  Steven L. Alter,et al.  Information Systems: Foundation of E-Business , 2002 .

[3]  Weiguo Fan Effective personalized delivery of information: A two-stage model and empirical analysis. , 2003 .

[4]  Edward A. Fox,et al.  Visualizing User Communities and Usage Trends of Digital Libraries Based on User Tracking Information , 2006, ICADL.

[5]  John Phillip Immroth,et al.  A guide to Library of Congress classification , 1968 .

[6]  devised by Melvil Dewey Dewey decimal classification and relative index , 1989 .

[7]  Hsinchun Chen,et al.  Knowledge Management Systems: A Text Mining Perspective , 2001 .

[8]  Chris North,et al.  An insight-based methodology for evaluating bioinformatics visualizations , 2005, IEEE Transactions on Visualization and Computer Graphics.

[9]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[10]  Gerhard Widmer,et al.  Learning in the Presence of Concept Drift and Hidden Contexts , 1996, Machine Learning.

[11]  Mike Thelwall Mining the World Wide Web: An Information Search Approach , 2002, J. Documentation.

[12]  Hans-Peter Kriegel,et al.  Ieee Transactions on Knowledge and Data Engineering Probabilistic Memory-based Collaborative Filtering , 2022 .

[13]  Shivakumar Vaithyanathan,et al.  Exploiting clustering and phrases for context-based information retrieval , 1997, SIGIR '97.

[14]  Ivan Poupyrev,et al.  3D User Interfaces: Theory and Practice , 2004 .

[15]  Raya Fidel,et al.  From information behaviour research to the design of information systems: the Cognitive Work Analysis framework , 2004, Inf. Res..

[16]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[17]  Anne Kao,et al.  Natural Language Processing and Text Mining , 2006 .

[18]  Hsinchun Chen,et al.  Criminal network analysis and visualization , 2005, CACM.

[19]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[20]  Ganesh S. Oak Information Visualization Introduction , 2022 .

[21]  Sushil Jajodia,et al.  Preserving Privacy in On-Line Analytical Processing (OLAP) , 2007, Advances in Information Security.

[22]  Hussein Suleman Introduction to the open archives initiative protocol for metadata harvesting , 2002, JCDL '02.

[23]  Ravi Kumar,et al.  Structure and evolution of blogspace , 2004, CACM.

[24]  Pawan Lingras,et al.  Building an Intelligent Web: Theory and Practice , 2007 .

[25]  Chaomei Chen,et al.  Empirical studies of information visualization: a meta-analysis , 2000, Int. J. Hum. Comput. Stud..

[26]  Philip S. Yu,et al.  On the design of a learning crawler for topical resource discovery , 2001, TOIS.

[27]  László Kovács,et al.  A Logging Scheme for Comparative Digital Library Evaluation , 2006, ECDL.

[28]  Edward A. Fox,et al.  Streams, structures, spaces, scenarios, societies (5s): A formal model for digital libraries , 2004, TOIS.

[29]  Johan Bollen,et al.  Evaluation of Digital Library Impact and User Communities by Analysis of Usage Patterns , 2002, D Lib Mag..

[30]  G. McCalla,et al.  Mining Implicit Ratings for Focused Collaborative Filtering for Paper Recommendations , 2003 .

[31]  James J. Thomas,et al.  Visualizing the non-visual: spatial analysis and interaction with information from text documents , 1995, Proceedings of Visualization 1995 Conference.

[32]  J.-L. Dhondt Out of memory , 1998 .

[33]  Sally Jo Cunningham,et al.  An Analysis of Usage of a Digital Library , 1998, ECDL.

[34]  David M. Nichols,et al.  Implicit Rating and Filtering , 1998 .

[35]  Danah Boyd,et al.  Vizster: visualizing online social networks , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[36]  Edward A. Fox,et al.  Interest-Based User Grouping Model for Collaborative Filtering in Digital Libraries , 2004, ICADL.

[37]  Alfred Kobsa,et al.  User Modeling for Personalized City Tours , 2002, Artificial Intelligence Review.

[38]  Hussein Suleman Using the repository explorer to achieve OAI protocol compliance , 2001, JCDL '01.

[39]  Weblog Wikipedia,et al.  In Wikipedia the Free Encyclopedia , 2005 .

[40]  David M. Pennock,et al.  Collaborative filtering with maximum entropy , 2004, IEEE Intelligent Systems.

[41]  Geoffrey I. Webb,et al.  # 2001 Kluwer Academic Publishers. Printed in the Netherlands. Machine Learning for User Modeling , 1999 .

[42]  Jaideep Srivastava,et al.  Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.

[43]  Krishna Bharat,et al.  SPHINX: A Framework for Creating Personal, Site-Specific Web Crawlers , 1998, Comput. Networks.

[44]  Dean P. Foster,et al.  A Formal Statistical Approach to Collaborative Filtering , 1998 .

[45]  S. Debowski Knowledge Management , 2005 .

[46]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[47]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[48]  Chris North,et al.  Design and Evaluation of Techniques to Utilize Implicit Rating Data in Complex Information Systems. , 2007 .

[49]  Ian Davidson,et al.  Visual Data Mining: Techniques and Tools for Data Visualization and Mining , 2002 .

[50]  Tong Zhang,et al.  Text Mining: Predictive Methods for Analyzing Unstructured Information , 2004 .

[51]  Mischa Dohler,et al.  Trends for the Near Future , 2006 .

[52]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[53]  Umberto Straccia,et al.  A Personalized Collaborative Digital Library Environment , 2002, ICADL.

[54]  Doug A. Bowman,et al.  New Directions in 3D User Interfaces , 2006, Int. J. Virtual Real..

[55]  David G. Stork,et al.  Pattern Classification , 1973 .

[56]  Chunxiao Xing,et al.  Personalized Services for Digital Library , 2002, ICADL.

[57]  Constantine D. Spyropoulos,et al.  Exploiting learning techniques for the acquisition of user stereotypes and communities , 1999 .

[58]  Vasilios Zarikas,et al.  Modeling decisions under uncertainty in adaptive user interfaces , 2007, Universal Access in the Information Society.

[59]  H. Rex Hartson,et al.  Developing user interfaces: ensuring usability through product & process , 1993 .

[60]  Carol June Bradley,et al.  The Dickinson classification : a cataloguing & classification manual for music , 1968 .

[61]  Belur V. Dasarathy,et al.  Nearest neighbor (NN) norms: NN pattern classification techniques , 1991 .

[62]  Edward A. Fox,et al.  Effectiveness of Implicit Rating Data on Characterizing Users in Complex Information Systems , 2005, ECDL.

[63]  C. Lee Giles,et al.  Probabilistic user behavior models , 2003, Third IEEE International Conference on Data Mining.

[64]  Nicholas J. Belkin,et al.  Interaction with Texts: Information Retrieval as Information-Seeking Behavior , 1993, Information Retrieval.

[65]  Catherine Plaisant,et al.  The challenge of information visualization evaluation , 2004, AVI.

[67]  Thomas W. Malone,et al.  Intelligent Information Sharing Systems , 1986 .

[68]  Lois Mai Chan A Guide to the Library of Congress Classification. Fifth Edition. Library and Information Science Text Series. , 1999 .

[69]  Diane Kelly Understanding implicit feedback and document preference: a naturalistic user study , 2004, SIGF.

[70]  Hock-Liew Eng,et al.  Networked digital library of theses and dissertations , 2005 .

[71]  Danah Boyd,et al.  Social network fragments: an interactive tool for exploring digital social connections , 2003, SIGGRAPH '03.

[72]  Hsinchun Chen,et al.  Comparing noun phrasing techniques for use with medical digital library tools , 2000, J. Am. Soc. Inf. Sci..

[73]  Edward A. Fox,et al.  An XML Log Standard and Tool for Digital Library Logging Analysis , 2002, ECDL.

[74]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[75]  Beth C. Lisberg Najberg Robert Spence: Information Visualization , 2001 .

[76]  Christopher Olston,et al.  What's new on the web?: the evolution of the web from a search engine perspective , 2004, WWW '04.

[77]  Cass R. Sunstein,et al.  Democracy and filtering , 2004, CACM.

[78]  Nicholas J. Belkin,et al.  Validation of a model of information seeking over multiple search sessions , 2005, J. Assoc. Inf. Sci. Technol..