A mouse model of MYCN-driven retinoblastoma reveals MYCN-independent tumor reemergence

The most frequent focal alterations in human retinoblastoma are mutations in the tumor-suppressor gene retinoblastoma (RB) and amplification of the oncogene MYCN. Whether MYCN overexpression drives retinoblastoma has not been assessed in model systems. Here, we have shown that Rb inactivation collaborates strongly with MYCN overexpression and leads to retinoblastoma in mice. Overexpression of human MYCN in the context of Rb inactivation increased the expression of MYC-, E2F-, and ribosome-related gene sets, promoted excessive proliferation, and led to retinoblastoma with anaplastic changes. We then modeled responses to MYCN-directed therapy by suppressing MYCN expression in MYCN-driven retinoblastomas. Initially, MYCN suppression led to proliferation arrest and partial tumor regression with loss of anaplasia. However, over time, retinoblastomas reemerged, typically without reactivation of human MYCN or amplification of murine Mycn. A subset of returning retinoblastomas showed genomic amplification of a Mycn target gene encoding the miR cluster miR-17~92, while most retinoblastomas reemerged without clear genetic alterations in either Mycn or known Mycn targets. This Rb/MYCN model recapitulates key genetic driver alterations seen in human retinoblastoma and reveals the emergence of MYCN independence in an initially MYCN-driven tumor.

[1]  L. Grote,et al.  Expanding the phenotype of feingold syndrome‐2 , 2015, American journal of medical genetics. Part A.

[2]  R. Machiraju,et al.  Redeployment of Myc and E2f1-3 drives Rb deficient cell cycles , 2015, Nature Cell Biology.

[3]  Bandana Sharma,et al.  CDK7 Inhibition Suppresses Super-Enhancer-Linked Oncogenic Transcription in MYCN-Driven Cancer , 2014, Cell.

[4]  Erin F. Simonds,et al.  Drugging MYCN through an allosteric transition in Aurora kinase A. , 2014, Cancer cell.

[5]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[6]  D. Dill,et al.  MYC through miR-17-92 suppresses specific target genes to maintain survival, autonomous proliferation, and a neoplastic state. , 2014, Cancer cell.

[7]  H. Grossniklaus,et al.  Histopathologic grading of anaplasia in retinoblastoma. , 2014, American journal of ophthalmology.

[8]  R. Wilson,et al.  RB1 gene inactivation by chromothripsis in human retinoblastoma , 2014, Oncotarget.

[9]  W. Lam,et al.  Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. , 2013, The Lancet. Oncology.

[10]  K. Stegmaier,et al.  Targeting MYCN in neuroblastoma by BET bromodomain inhibition. , 2013, Cancer discovery.

[11]  D. Green,et al.  c-Myc Is a Universal Amplifier of Expressed Genes in Lymphocytes and Embryonic Stem Cells , 2012, Cell.

[12]  Charles Y. Lin,et al.  Transcriptional Amplification in Tumor Cells with Elevated c-Myc , 2012, Cell.

[13]  D. Mu,et al.  Cooperation between Rb and Arf in suppressing mouse retinoblastoma. , 2012, The Journal of clinical investigation.

[14]  J. Wrana,et al.  Established and New Mouse Models Reveal E2f1 and Cdk2 Dependency of Retinoblastoma and Expose Strategies to Block Tumor Initiation , 2012, Oncogene.

[15]  J. M. Thomson,et al.  miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma. , 2011, Genes & development.

[16]  Patrick Callier,et al.  Germline deletion of the miR-17-92 cluster causes growth and skeletal defects in humans , 2011, Nature Genetics.

[17]  S. Vandenberg,et al.  Pleiotropic role for MYCN in medulloblastoma. , 2010, Genes & development.

[18]  D. Felsher,et al.  MYC as a regulator of ribosome biogenesis and protein synthesis , 2010, Nature Reviews Cancer.

[19]  Christopher B. Burge,et al.  c-Myc Regulates Transcriptional Pause Release , 2010, Cell.

[20]  F. Westermann,et al.  MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors , 2010, Oncogene.

[21]  Matthew D. Young,et al.  Gene ontology analysis for RNA-seq: accounting for selection bias , 2010, Genome Biology.

[22]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[23]  E. Fredlund,et al.  MYCN-regulated microRNAs repress estrogen receptor-α (ESR1) expression and neuronal differentiation in human neuroblastoma , 2010, Proceedings of the National Academy of Sciences.

[24]  Doron Betel,et al.  Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. , 2009, Genes & development.

[25]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[26]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[27]  Richard Grundy,et al.  The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. , 2009, Cancer research.

[28]  S. Salzberg,et al.  TopHat: discovering splice junctions with RNA-Seq , 2009, Bioinform..

[29]  Chao Xie,et al.  CNV-seq, a new method to detect copy number variation using high-throughput sequencing , 2009, BMC Bioinformatics.

[30]  R. Beijersbergen,et al.  Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. , 2009, Cancer cell.

[31]  A. Donfrancesco,et al.  Antagomir-17-5p Abolishes the Growth of Therapy-Resistant Neuroblastoma through p21 and BIM , 2008, PloS one.

[32]  H. Varmus,et al.  Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras , 2008, Proceedings of the National Academy of Sciences.

[33]  C. Allis,et al.  Extraction, purification and analysis of histones , 2007, Nature Protocols.

[34]  Birgit Samans,et al.  MYCN regulates oncogenic MicroRNAs in neuroblastoma , 2007, International journal of cancer.

[35]  T. Jacks,et al.  Murine bilateral retinoblastoma exhibiting rapid‐onset, metastatic progression and N‐myc gene amplification , 2007, The EMBO journal.

[36]  M. Dyer,et al.  The first knockout mouse model of retinoblastoma. , 2006, Cell cycle.

[37]  Philip R. Gafken,et al.  Myc influences global chromatin structure , 2006, The EMBO journal.

[38]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[40]  Hans van Bokhoven,et al.  MYCN haploinsufficiency is associated with reduced brain size and intestinal atresias in Feingold syndrome , 2005, Nature Genetics.

[41]  J. Dannenberg,et al.  Tissue-specific tumor suppressor activity of retinoblastoma gene homologs p107 and p130. , 2004, Genes & development.

[42]  T. Jacks,et al.  Cell type-specific effects of Rb deletion in the murine retina. , 2004, Genes & development.

[43]  R. Slack,et al.  Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. , 2004, Cancer cell.

[44]  Jonathan Gray,et al.  Rb regulates proliferation and rod photoreceptor development in the mouse retina , 2004, Nature Genetics.

[45]  Yoav Benjamini,et al.  Identifying differentially expressed genes using false discovery rate controlling procedures , 2003, Bioinform..

[46]  F. Guillemot,et al.  Pax6 Is Required for the Multipotent State of Retinal Progenitor Cells , 2001, Cell.

[47]  M Schwab,et al.  N‐myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis , 2001, The EMBO journal.

[48]  A. Berns,et al.  p107 is a suppressor of retinoblastoma development in pRb-deficient mice. , 1998, Genes & development.

[49]  G. Mohapatra,et al.  Targeted expression of MYCN causes neuroblastoma in transgenic mice , 1997, The EMBO journal.

[50]  A. Bradley,et al.  Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis , 1992, Nature.

[51]  A. Berns,et al.  Requirement for a functional Rb-1 gene in murine development , 1992, Nature.

[52]  R. Weinberg,et al.  Effects of an Rb mutation in the mouse , 1992, Nature.

[53]  S. Baylin,et al.  Gene amplification of c-myc and N-myc in small cell carcinoma of the lung. , 1986, Science.

[54]  Wen-Hwa Lee,et al.  Expression and amplification of the N-myc gene in primary retinoblastoma , 1984, Nature.

[55]  S. Robinson,et al.  Small Molecule Inhibitors of Aurora-A Induce Proteasomal Degradation of N-Myc in Childhood Neuroblastoma. , 2016, Cancer cell.

[56]  M. Sangwan,et al.  Established and new mouse models reveal E2f1 and Cdk2 dependency of retinoblastoma, and expose effective strategies to block tumor initiation , 2013 .