Tropical optimization problems in time-constrained project scheduling

We consider a project that consists of activities to be performed in parallel under various temporal constraints, which include start-start, start-finish and finish-start precedence relationships, release times, deadlines and due dates. Scheduling problems are formulated to find optimal schedules for the project with respect to different objective functions to be minimized, such as the project makespan, the maximum deviation from the due dates, the maximum flow-time and the maximum deviation of finish times. We represent these problems as optimization problems in terms of tropical mathematics, and then solve them by applying direct solution methods of tropical optimization. As a result, new direct solutions of the scheduling problems are obtained in a compact vector form, which is ready for further analysis and practical implementation. The solutions are illustrated by simple numerical examples.

[1]  Nikolai Krivulin,et al.  A constrained tropical optimization problem: complete solution and application example , 2013, ArXiv.

[2]  Bert De Reyck,et al.  A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations , 1998, Eur. J. Oper. Res..

[3]  P. Butkovic Max-linear Systems: Theory and Algorithms , 2010 .

[4]  R. A. Cuninghame-Green,et al.  Describing Industrial Processes with Interference and Approximating Their Steady-State Behaviour , 1962 .

[5]  J. Golan Semirings and Affine Equations over Them: Theory and Applications , 2003 .

[6]  Nikolai Krivulin,et al.  Explicit solution of a tropical optimization problem with application to project scheduling , 2013, ArXiv.

[7]  Karel Zimmermann,et al.  Disjunctive optimization, max-separable problems and extremal algebras , 2003, Theor. Comput. Sci..

[8]  Jean-Charles Billaut,et al.  Multicriteria scheduling , 2005, Eur. J. Oper. Res..

[9]  Han Hoogeveen,et al.  Multicriteria scheduling , 2005, Eur. J. Oper. Res..

[10]  S. Yau Mathematics and its applications , 2002 .

[11]  Professor Dr. Klaus Neumann,et al.  Project Scheduling with Time Windows and Scarce Resources , 2003, Springer Berlin Heidelberg.

[12]  M. Fiedler,et al.  Linear Optimization Problems with Inexact Data , 2006 .

[13]  Geert Jan Olsder,et al.  Max Plus at Work-Modelling and Analysis of Synchronized Systems , 2006 .

[14]  V. Kolokoltsov,et al.  Idempotent Analysis and Its Applications , 1997 .

[15]  Timothy G. Griffin,et al.  Relational and algebraic methods in computer science , 2015, J. Log. Algebraic Methods Program..

[16]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[17]  Marianne Akian,et al.  Max-Plus Algebra , 2006 .

[18]  Nikolai K. Krivulin A solution of a tropical linear vector equation , 2012, ArXiv.

[19]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[20]  S. N. N. Pandit,et al.  A New Matrix Calculus , 1961 .

[21]  U. Zimmermann Linear and combinatorial optimization in ordered algebraic structures , 1981 .

[22]  Nikolai Krivulin,et al.  Extremal properties of tropical eigenvalues and solutions to tropical optimization problems , 2013, ArXiv.

[23]  Nikolai Krivulin,et al.  Complete Solution of a Constrained Tropical Optimization Problem with Application to Location Analysis , 2013, RAMiCS.

[24]  Mario Vanhoucke,et al.  Project Management with Dynamic Scheduling , 2012 .

[25]  G. Litvinov Maslov dequantization, idempotent and tropical mathematics: A brief introduction , 2005, math/0507014.

[26]  Nikolai Krivulin,et al.  Tropical optimization problems , 2014, ArXiv.

[27]  Margaret M. Wiecek,et al.  International Series in Operations Research and Management Science , 2016 .

[28]  Solution of generalized linear vector equations in idempotent algebra , 2006 .

[29]  Nikolai Krivulin,et al.  A multidimensional tropical optimization problem with a non-linear objective function and linear constraints , 2013, ArXiv.

[31]  Christian Artigues,et al.  A polynomial activity insertion algorithm in a multi-resource schedule with cumulative constraints and multiple modes , 2000, Eur. J. Oper. Res..

[32]  Erik Demeulemeester,et al.  Project scheduling : a research handbook , 2002 .

[33]  A. J. Hoffman On abstract dual linear programs , 1963 .

[34]  Some optimization problems with extremal operations , 1984 .

[35]  Nikolai Krivulin Plenary lecture 3: algebraic solutions to scheduling problems in project management , 2012 .

[36]  Bernd Sturmfels,et al.  Tropical Mathematics , 2004, math/0408099.

[37]  Nikolai Krivulin,et al.  Tropical optimization problems with application to project scheduling with minimum makespan , 2014, Ann. Oper. Res..

[38]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[39]  Michel Minoux,et al.  Graphs, dioids and semirings : new models and algorithms , 2008 .

[40]  B. Ciffler Scheduling general production systems using schedule algebra , 1963 .

[41]  Philip M. Wolfe,et al.  Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach , 1969 .

[42]  Nikolai Krivulin,et al.  Tropical Optimization Problems in Project Scheduling , 2015 .

[43]  Jean-Charles Billaut,et al.  Application of an optimization problem in Max-Plus algebra to scheduling problems , 2006, Discret. Appl. Math..

[44]  Laurent Houssin,et al.  Cyclic jobshop problem and (max, plus) algebra , 2011 .