Goodness-of-fit testing of error distribution in nonparametric ARCH(1) models
暂无分享,去创建一个
[1] Jianqing Fan,et al. Efficient Estimation of Conditional Variance Functions in Stochastic Regression , 1998 .
[2] W. Wefelmeyer,et al. Estimating the innovation distribution in nonparametric autoregression , 2009 .
[3] H. Koul. Weighted Empirical Processes in Dynamic Nonlinear Models , 2002 .
[4] E. Khmaladze,et al. Goodness-of-fit problem for errors in nonparametric regression: Distribution free approach , 2009, 0909.0170.
[5] Natalie Neumeyer,et al. A note on non‐parametric testing for Gaussian innovations in AR–ARCH models , 2012, 1211.1204.
[6] Andrew P. Soms,et al. An Asymptotic Expansion for the Tail Area of the t -Distribution , 1976 .
[7] Elias Masry,et al. MULTIVARIATE LOCAL POLYNOMIAL REGRESSION FOR TIME SERIES:UNIFORM STRONG CONSISTENCY AND RATES , 1996 .
[8] S. Ling,et al. Fitting an Error Distribution in Some Heteroscedastic Time Series Models , 2006, math/0607040.
[9] Wei Biao Wu,et al. Kernel estimation for time series: An asymptotic theory , 2010 .
[10] H. Koul. A weak convergence result useful in robust autoregression , 1991 .
[12] D. Freedman. On Tail Probabilities for Martingales , 1975 .
[13] Ingrid Van Keilegom,et al. Estimating the error distribution in nonparametric multiple regression with applications to model testing , 2010, J. Multivar. Anal..
[14] J. L. Ojeda,et al. Hölder continuity properties of the local polynomial estimator , 2008 .
[15] Qiwei Yao,et al. Quantifying the influence of initial values on nonlinear prediction , 1994 .
[16] Hira L. Koul,et al. Martingale transforms goodness-of-fit tests in regression models , 2004 .
[17] Natalie Neumeyer,et al. Testing for a Change of the Innovation Distribution in Nonparametric Autoregression: The Sequential Empirical Process Approach , 2012, 1211.1212.
[18] Jianqing Fan,et al. Nonlinear Time Series : Nonparametric and Parametric Methods , 2005 .