Goodness-of-fit testing of error distribution in nonparametric ARCH(1) models

This paper discusses the goodness-of-fit testing of an error distribution in a nonparametric autoregressive conditionally heteroscedastic model of order one. The test is based on a weighted empirical distribution function of the residuals, where the residuals are obtained from a local linear fit for the autoregressive and heteroscedasticity functions, and the weights are chosen to adjust for the undesirable behavior of these nonparametric estimators in the tails of their domains. An asymptotically distribution free test is obtained via the Khmaladze martingale transformation. A simulation study is included to assess the finite sample level and power behavior of this test. It exhibits some superiority of this test compared to the classical Kolmogorov-Smirnov and Cramer-von Mises tests in terms of the finite sample level and power.

[1]  Jianqing Fan,et al.  Efficient Estimation of Conditional Variance Functions in Stochastic Regression , 1998 .

[2]  W. Wefelmeyer,et al.  Estimating the innovation distribution in nonparametric autoregression , 2009 .

[3]  H. Koul Weighted Empirical Processes in Dynamic Nonlinear Models , 2002 .

[4]  E. Khmaladze,et al.  Goodness-of-fit problem for errors in nonparametric regression: Distribution free approach , 2009, 0909.0170.

[5]  Natalie Neumeyer,et al.  A note on non‐parametric testing for Gaussian innovations in AR–ARCH models , 2012, 1211.1204.

[6]  Andrew P. Soms,et al.  An Asymptotic Expansion for the Tail Area of the t -Distribution , 1976 .

[7]  Elias Masry,et al.  MULTIVARIATE LOCAL POLYNOMIAL REGRESSION FOR TIME SERIES:UNIFORM STRONG CONSISTENCY AND RATES , 1996 .

[8]  S. Ling,et al.  Fitting an Error Distribution in Some Heteroscedastic Time Series Models , 2006, math/0607040.

[9]  Wei Biao Wu,et al.  Kernel estimation for time series: An asymptotic theory , 2010 .

[10]  H. Koul A weak convergence result useful in robust autoregression , 1991 .

[11]  Performance of variance function estimators for autoregressive time series of order one: asymptotic normality and numerical study , 2012 .

[12]  D. Freedman On Tail Probabilities for Martingales , 1975 .

[13]  Ingrid Van Keilegom,et al.  Estimating the error distribution in nonparametric multiple regression with applications to model testing , 2010, J. Multivar. Anal..

[14]  J. L. Ojeda,et al.  Hölder continuity properties of the local polynomial estimator , 2008 .

[15]  Qiwei Yao,et al.  Quantifying the influence of initial values on nonlinear prediction , 1994 .

[16]  Hira L. Koul,et al.  Martingale transforms goodness-of-fit tests in regression models , 2004 .

[17]  Natalie Neumeyer,et al.  Testing for a Change of the Innovation Distribution in Nonparametric Autoregression: The Sequential Empirical Process Approach , 2012, 1211.1212.

[18]  Jianqing Fan,et al.  Nonlinear Time Series : Nonparametric and Parametric Methods , 2005 .