DDT in fuel–air mixtures at elevated temperatures and pressures

[1]  Joseph E. Shepherd,et al.  Detonations in hydrocarbon fuel blends , 2003 .

[2]  S. Dorofeev,et al.  Run-up distances to supersonic flames in obstacle-laden tubes , 2002 .

[3]  G. Ciccarelli,et al.  Flame Acceleration in Fuel-Air Mixtures at Elevated Initial Temperatures , 2002 .

[4]  G. Ciccarelli Critical tube measurements at elevated initial mixture temperatures , 2002 .

[5]  S. Murray,et al.  JP-10 Vapour Detonations at Elevated Pressures and Temperatures , 2001 .

[6]  S. Dorofeev,et al.  Extraction of Basic Flame Properties from Laminar Flame Speed Calculations , 2001 .

[7]  V. I. Alekseev,et al.  Comparison of critical conditions for DDT in regular and irregular cellular detonation systems , 2000 .

[8]  G. Ciccarelli,et al.  The influence of initial temperature on flame acceleration and deflagration-to-detonation transition , 1996 .

[9]  G. Ciccarelli,et al.  Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures , 1994 .

[10]  Chung King Law,et al.  A Compilation of Experimental Data on Laminar Burning Velocities , 1993 .

[11]  F. Egolfopoulos,et al.  Chain mechanisms in the overall reaction orders in laminar flame propagation , 1990 .

[12]  R. Knystautas,et al.  Criteria for transition to detonation in tubes , 1988 .

[13]  R. I. Soloukhin,et al.  Influence of Cellular Regularity on the Behaviorof Gaseous Detonations , 1986 .

[14]  R. Knystautas,et al.  Turbulent flame propagation in obstacle-filled tubes , 1985 .

[15]  R. Knystautas,et al.  Measurement of Cell Size in Hydrocarbon-air Mixtures and Predictions of Critical Tube Diameter, Critical Initiation Energy and Detonability Limits , 1984 .

[16]  D.D.S. Liu,et al.  Laminar burning velocities of hydrogen-air and hydrogen-airsteam flames , 1983 .

[17]  E. Wintenberger,et al.  Investigation of Deflagration to Detonation Transition for Application to Pulse Detonation Engine Ignition Systems , 2022 .