Statistical and Geometric Modeling of Spatio-Temporal Patterns for Video Understanding

Title of Dissertation: Statistical and Geometric Modeling of Spatio-Temporal Patterns for Video Understanding Pavan Turaga, Ph.D. Oral Examination, 2009 Dissertation directed by: Professor Rama Chellappa Department of Electrical and Computer Engineering Spatio-temporal patterns abound in the real world, and understanding them computationally holds the promise of enabling a large class of applications such as video surveillance, biometrics, computer graphics and animation. In this dissertation, we study models and algorithms to describe complex spatio-temporal patterns in videos for a wide range of applications. The spatio-temporal pattern recognition problem involves recognizing an input video as an instance of a known class. For this problem, we show that a first order GaussMarkov process is an appropriate model to describe the space of primitives. We then show that the space of primitives is not a Euclidean space but a Riemannian manifold. We use the geometric properties of this manifold to define distances and statistics. This then paves the way to model temporal variations of the primitives. We then show applications of these techniques in the problem of activity recognition and pattern discovery from long videos. The pattern discovery problem on the other hand, requires uncovering patterns from large datasets in an unsupervised manner for applications such as automatic indexing and tagging. Most state-of-the-art techniques index videos according to the global content in the scene such as color, texture and brightness. In this dissertation, we discuss the problem of activity based indexing of videos. We examine the various issues involved in such an effort and describe a general framework to address the problem. We then design a cascade of dynamical systems model for clustering videos based on their dynamics. We augment the traditional dynamical systems model in two ways. Firstly, we describe activities as a cascade of dynamical systems. This significantly enhances the expressive power of the model while retaining many of the computational advantages of using dynamical models. Secondly, we also derive methods to incorporate view and rate-invariance into these models so that similar actions are clustered together irrespective of the viewpoint or the rate of execution of the activity. We also derive algorithms to learn the model parameters from a video stream and demonstrate how a given video sequence may be segmented into different clusters where each cluster represents an activity. Finally, we show the broader impact of the algorithms and tools developed in this dissertation for several image-based recognition problems that involve statistical inference over non-Euclidean spaces. We demonstrate how an understanding of the geometry of the underlying space leads to methods that are more accurate than traditional approaches. We present examples in shape analysis, object recognition, video-based face recognition, and age-estimation from facial features to demonstrate these ideas. Statistical and Geometric Modeling of Spatio-Temporal Patterns for Video Understanding

[1]  Bart De Moor,et al.  Subspace angles between ARMA models , 2002, Syst. Control. Lett..

[2]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[3]  Zhi-Hua Zhou,et al.  Automatic Age Estimation Based on Facial Aging Patterns , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Martin A. Giese,et al.  Morphable Models for the Analysis and Synthesis of Complex Motion Patterns , 2000, International Journal of Computer Vision.

[5]  Michael J. Black,et al.  Parameterized Modeling and Recognition of Activities , 1999, Comput. Vis. Image Underst..

[6]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[7]  A. Elgammal,et al.  Inferring 3D body pose from silhouettes using activity manifold learning , 2004, CVPR 2004.

[8]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[9]  Yan Huang,et al.  Propagation networks for recognition of partially ordered sequential action , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[10]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[11]  Payam Saisan,et al.  Dynamic texture recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[12]  Ramakant Nevatia,et al.  An Ontology for Video Event Representation , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[13]  T. Rao The Fitting of Non-stationary Time-series Models with Time-dependent Parameters , 1970 .

[14]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Ramesh C. Jain,et al.  Recursive identification of gesture inputs using hidden Markov models , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[16]  Michael Isard,et al.  Learning and Classification of Complex Dynamics , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Anuj Srivastava,et al.  Statistical shape analysis: clustering, learning, and testing , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Hans-Jörg Schek,et al.  A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces , 1998, VLDB.

[19]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[20]  Robert Pless,et al.  Image spaces and video trajectories: using Isomap to explore video sequences , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[21]  Ashok Samal,et al.  How effective are landmarks and their geometry for face recognition? , 2006, Comput. Vis. Image Underst..

[22]  Dimitris N. Metaxas,et al.  ASL recognition based on a coupling between HMMs and 3D motion analysis , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[23]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[24]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[25]  Peter Meer,et al.  Nonlinear Mean Shift for Clustering over Analytic Manifolds , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[26]  Vladimir Pavlovic,et al.  Impact of dynamic model learning on classification of human motion , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[27]  Ramakant Nevatia,et al.  Event Detection and Analysis from Video Streams , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Dmitry Chetverikov,et al.  A Brief Survey of Dynamic Texture Description and Recognition , 2005, CORES.

[29]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, CAIP.

[30]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[31]  Serge J. Belongie,et al.  Behavior recognition via sparse spatio-temporal features , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[32]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[33]  Rémi Ronfard,et al.  Automatic Discovery of Action Taxonomies from Multiple Views , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[34]  R. Oka,et al.  Recognition of dexterous manipulations from time-varying images , 1994, Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects.

[35]  R. Nelson,et al.  Low level recognition of human motion (or how to get your man without finding his body parts) , 1994, Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects.

[36]  Niels da Vitoria Lobo,et al.  Age Classification from Facial Images , 1999, Comput. Vis. Image Underst..

[37]  Stefano Soatto,et al.  Deformotion: Deforming Motion, Shape Average and the Joint Registration and Approximation of Structures in Images , 2003, International Journal of Computer Vision.

[38]  Amnon Shashua,et al.  Robust recovery of camera rotation from three frames , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[39]  Irfan A. Essa,et al.  Recognizing multitasked activities from video using stochastic context-free grammar , 2002, AAAI/IAAI.

[40]  James M. Rehg,et al.  Learning and inference in parametric switching linear dynamic systems , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[41]  A. Willsky,et al.  Time-varying parametric modeling of speech☆ , 1983 .

[42]  T. Claasen,et al.  On stationary linear time-varying systems , 1982 .

[43]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[44]  B. N. Chatterji,et al.  An FFT-based technique for translation, rotation, and scale-invariant image registration , 1996, IEEE Trans. Image Process..

[45]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[46]  Datong Chen,et al.  Towards automatic analysis of social interaction patterns in a nursing home environment from video , 2004, MIR '04.

[47]  Pietro Perona,et al.  Decomposition of human motion into dynamics-based primitives with application to drawing tasks , 2003, Autom..

[48]  Vladimir Pavlovic,et al.  Learning Switching Linear Models of Human Motion , 2000, NIPS.

[49]  Alan Oppenheim,et al.  Time-varying parametric modeling of speech , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[50]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[51]  Mubarak Shah,et al.  A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[53]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Rama Chellappa,et al.  Efficient Indexing For Articulation Invariant Shape Matching And Retrieval , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Mark S. Nixon,et al.  What image information is important in silhouette-based gait recognition? , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[56]  Trevor Darrell,et al.  Latent-Dynamic Discriminative Models for Continuous Gesture Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[57]  Rama Chellappa,et al.  Face Verification Across Age Progression , 2006, IEEE Trans. Image Process..

[58]  James M. Rehg,et al.  Learning and Inferring Motion Patterns using Parametric Segmental Switching Linear Dynamic Systems , 2008, International Journal of Computer Vision.

[59]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[60]  Irfan A. Essa,et al.  Exploiting human actions and object context for recognition tasks , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[61]  Michael Werman,et al.  Affine Invariance Revisited , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[62]  Shuicheng Yan,et al.  Pursuing Informative Projection on Grassmann Manifold , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[63]  King-Sun Fu,et al.  Syntactic Pattern Recognition And Applications , 1968 .

[64]  Trevor Darrell,et al.  Face recognition with image sets using manifold density divergence , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[65]  M. Schleidt,et al.  Temporal Segmentation of Human Short-Term Behavior in Everyday Activities and Interview Sessions , 1999, Naturwissenschaften.

[66]  Alex Pentland,et al.  Real-Time American Sign Language Recognition Using Desk and Wearable Computer Based Video , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Cristian Sminchisescu,et al.  Conditional Random Fields for Contextual Human Motion Recognition , 2005, ICCV.

[68]  Shuicheng Yan,et al.  Learning Auto-Structured Regressor from Uncertain Nonnegative Labels , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[69]  Mubarak Shah,et al.  View-invariance in action recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[70]  Regunathan Radhakrishnan,et al.  Video mining: pattern discovery versus pattern recognition , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[71]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[72]  Junji Yamato,et al.  Recognizing human action in time-sequential images using hidden Markov model , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[73]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[74]  J T Todd,et al.  Perception of growth: a geometric analysis of how different styles of change are distinguished. , 1981, Journal of experimental psychology. Human perception and performance.

[75]  Yang Wang,et al.  Unsupervised Discovery of Action Classes , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[76]  Rama Chellappa,et al.  View Invariance for Human Action Recognition , 2005, International Journal of Computer Vision.

[77]  Lennart Ljung,et al.  System identification (2nd ed.): theory for the user , 1999 .

[78]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[79]  Irfan A. Essa,et al.  Expectation grammars: leveraging high-level expectations for activity recognition , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[80]  H. Akaike A new look at the statistical model identification , 1974 .

[81]  Mario Sznaier,et al.  A model (in)validation approach to gait classification , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[82]  Hugo Vieira Neto,et al.  Incremental PCA: an alternative approach for novelty detection , 2005 .

[83]  Rama Chellappa,et al.  View invariants for human action recognition , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[84]  Nuno Vasconcelos,et al.  Classifying Video with Kernel Dynamic Textures , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[85]  Bart De Moor,et al.  Subspace algorithms for the stochastic identification problem, , 1993, Autom..

[86]  Dit-Yan Yeung,et al.  Locally Linear Models on Face Appearance Manifolds with Application to Dual-Subspace Based Classification , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[87]  Herbert Freeman,et al.  On the Encoding of Arbitrary Geometric Configurations , 1961, IRE Trans. Electron. Comput..

[88]  Alex Pentland,et al.  sing Interpolated Views , 1996 .

[89]  Jake K. Aggarwal,et al.  Segmentation and recognition of continuous human activity , 2001, Proceedings IEEE Workshop on Detection and Recognition of Events in Video.

[90]  Regunathan Radhakrishnan,et al.  A Unified Framework for Video Summarization, Browsing, and Retrieval , 2006 .

[91]  Payam Saisan,et al.  Gait recognition using dynamic affine invariants , 2004 .

[92]  Ramakant Nevatia,et al.  Large-scale event detection using semi-hidden Markov models , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[93]  J. B. Pittenger,et al.  The perception of human growth. , 1980, Scientific American.

[94]  Monique Thonnat,et al.  A video interpretation platform applied to bank agency monitoring , 2004 .

[95]  Mubarak Shah,et al.  View-Invariant Representation and Recognition of Actions , 2002, International Journal of Computer Vision.

[96]  Yun Fu,et al.  Image-Based Human Age Estimation by Manifold Learning and Locally Adjusted Robust Regression , 2008, IEEE Transactions on Image Processing.

[97]  Matthew Brand,et al.  Understanding manipulation in video , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[98]  Mubarak Shah,et al.  Ontology and taxonomy collaborated framework for meeting classification , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[99]  Aaron F. Bobick,et al.  State-Based Recognition of Gesture , 1997 .

[100]  Sudeep Sarkar,et al.  Improved gait recognition by gait dynamics normalization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[101]  K. Mardia,et al.  Affine shape analysis and image analysis , 2003 .

[102]  Larry S. Davis,et al.  Representation and Recognition of Events in Surveillance Video Using Petri Nets , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[103]  Georgios B. Giannakis,et al.  Subspace methods for blind estimation of time-varying FIR channels , 1997, IEEE Trans. Signal Process..

[104]  Rama Chellappa,et al.  Mixed-State Models for Nonstationary Multiobject Activities , 2007, EURASIP J. Adv. Signal Process..

[105]  Jianbo Shi,et al.  Detecting unusual activity in video , 2004, CVPR 2004.

[106]  James L. Crowley,et al.  Probabilistic recognition of activity using local appearance , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[107]  A F Bobick,et al.  Movement, activity and action: the role of knowledge in the perception of motion. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[108]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[109]  Jesse Hoey,et al.  Representation and recognition of complex human motion , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[110]  Ken-ichi Maeda,et al.  Face recognition using temporal image sequence , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[111]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[112]  R. Bhattacharya,et al.  LARGE SAMPLE THEORY OF INTRINSIC AND EXTRINSIC SAMPLE MEANS ON MANIFOLDS—II , 2003 .

[113]  Daniel D. Lee,et al.  Grassmann discriminant analysis: a unifying view on subspace-based learning , 2008, ICML '08.

[114]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[115]  Steven M. Seitz,et al.  View-Invariant Analysis of Cyclic Motion , 1997, International Journal of Computer Vision.

[116]  Stefano Soatto,et al.  Recognition of human gaits , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[117]  J. B. Pittenger,et al.  Aging faces as viscal-elastic events: implications for a theory of nonrigid shape perception. , 1975, Journal of experimental psychology. Human perception and performance.

[118]  Mark S. Nixon,et al.  What image information is important in silhouette-based gait recognition? , 2004, CVPR 2004.

[119]  Ales Leonardis,et al.  Incremental PCA for on-line visual learning and recognition , 2002, Object recognition supported by user interaction for service robots.

[120]  Rama Chellappa,et al.  A system identification approach for video-based face recognition , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[121]  P. Perona,et al.  Primitives for Human Motion: a Dynamical Approach , 2002 .

[122]  R. Vidal,et al.  Observability and identifiability of jump linear systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[123]  Josef Kittler,et al.  Discriminative Learning and Recognition of Image Set Classes Using Canonical Correlations , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[124]  Steve Mann,et al.  Video orbits of the projective group a simple approach to featureless estimation of parameters , 1997, IEEE Trans. Image Process..

[125]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[126]  Nir Friedman,et al.  Being Bayesian About Network Structure. A Bayesian Approach to Structure Discovery in Bayesian Networks , 2004, Machine Learning.

[127]  Ye Xu,et al.  Estimating Human Age by Manifold Analysis of Face Pictures and Regression on Aging Features , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[128]  M. Shah,et al.  On the use of anthropometry in the invariant analysis of human actions , 2004, ICPR 2004.

[129]  Lawton Hubert Lee,et al.  Identification and Robust Control of Linear Parameter-Varying Systems , 1997 .

[130]  James M. Rehg,et al.  Parameterized Duration Mmodeling for Switching Linear Dynamic Systems , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[131]  Rama Chellappa,et al.  A Constrained Probabilistic Petri Net Framework for Human Activity Detection in Video* , 2008, IEEE Transactions on Multimedia.

[132]  K. Mardia,et al.  Projective Shape Analysis , 1999 .

[133]  Alexander J. Smola,et al.  Binet-Cauchy Kernels , 2004, NIPS.

[134]  Jake K. Aggarwal,et al.  Recognition of Composite Human Activities through Context-Free Grammar Based Representation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[135]  Yaser Sheikh,et al.  Exploring the space of a human action , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[136]  M. Alex O. Vasilescu,et al.  Recognizing action events from multiple viewpoints , 2001, Proceedings IEEE Workshop on Detection and Recognition of Events in Video.

[137]  Rama Chellappa,et al.  Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[138]  Jake K. Aggarwal,et al.  Human Motion Analysis: A Review , 1999, Comput. Vis. Image Underst..

[139]  Ashok Veeraraghavan,et al.  The Function Space of an Activity , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[140]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[141]  Mubarak Shah,et al.  Motion-based recognition a survey , 1995, Image Vis. Comput..

[142]  C. Christodoulou,et al.  Comparing different classifiers for automatic age estimation , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[143]  Rama Chellappa,et al.  From Videos to Verbs: Mining Videos for Activities using a Cascade of Dynamical Systems , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[144]  David I. Perrett,et al.  Synthesising continuous-tone caricatures , 1991, Image Vis. Comput..

[145]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[146]  Graham Coleman,et al.  Detection and explanation of anomalous activities: representing activities as bags of event n-grams , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[147]  Geoffrey E. Hinton,et al.  Parameter estimation for linear dynamical systems , 1996 .

[148]  Mubarak Shah,et al.  Ontology and taxonomy collaborated framework for meeting classification , 2004, ICPR 2004.

[149]  Robert Pless,et al.  Analysis of Persistent Motion Patterns Using the 3D Structure Tensor , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[150]  Ramakant Nevatia,et al.  Video-based event recognition: activity representation and probabilistic recognition methods , 2004, Comput. Vis. Image Underst..

[151]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[152]  Bruno Pelletier Kernel density estimation on Riemannian manifolds , 2005 .

[153]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[154]  David J. Kriegman,et al.  Video-based face recognition using probabilistic appearance manifolds , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[155]  Anuj Srivastava,et al.  Bayesian and geometric subspace tracking , 2004, Advances in Applied Probability.

[156]  Thomas S. Huang,et al.  SOLVING THREE DIMENSIONAL SMALL-ROTATION MOTION EQUATIONS. , 1983, CVPR 1983.

[157]  Osamu Yamaguchi,et al.  Face Recognition Using Multi-viewpoint Patterns for Robot Vision , 2003, ISRR.

[158]  Daniel D. Lee,et al.  Subspace-based learning with grassmann kernels , 2008 .

[159]  Ivan Laptev,et al.  On Space-Time Interest Points , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[160]  Timothy F. Cootes,et al.  Toward Automatic Simulation of Aging Effects on Face Images , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[161]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[162]  Larry S. Davis,et al.  Ballistic Hand Movements , 2006, AMDO.

[163]  René David,et al.  Petri nets for modeling of dynamic systems: A survey , 1994, Autom..

[164]  Rama Chellappa,et al.  "Shape Activity": a continuous-state HMM for moving/deforming shapes with application to abnormal activity detection , 2005, IEEE Transactions on Image Processing.

[165]  P. Absil,et al.  Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .

[166]  Gunnar Sparr Depth computations from polyhedral images , 1992, Image Vis. Comput..

[167]  Jeffrey Mark Siskind,et al.  A Maximum-Likelihood Approach to Visual Event Classification , 1996, ECCV.

[168]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[169]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[170]  Ramakant Nevatia,et al.  Multi-agent event recognition , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[171]  Sudeep Sarkar,et al.  The humanID gait challenge problem: data sets, performance, and analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[172]  R N Aslin,et al.  Statistical Learning by 8-Month-Old Infants , 1996, Science.

[173]  Lihi Zelnik-Manor,et al.  Event-based analysis of video , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[174]  James M. Rehg,et al.  Data-Driven MCMC for Learning and Inference in Switching Linear Dynamic Systems , 2005, AAAI.

[175]  Michel Verhaegen,et al.  Subspace identification of multivariable linear parameter-varying systems , 2002, Autom..

[176]  Larry S. Davis,et al.  VidMAP: video monitoring of activity with Prolog , 2005, IEEE Conference on Advanced Video and Signal Based Surveillance, 2005..

[177]  Claudio S. Pinhanez,et al.  Human action detection using PNF propagation of temporal constraints , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[178]  Christoph Bregler,et al.  Learning and recognizing human dynamics in video sequences , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[179]  Juan Carlos Niebles,et al.  Unsupervised Learning of Human Action Categories , 2006 .

[180]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[181]  Pietro Perona,et al.  Human action recognition by sequence of movelet codewords , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[182]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[183]  G. Rizzolatti,et al.  Action recognition in the premotor cortex. , 1996, Brain : a journal of neurology.

[184]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[185]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[186]  Aaron F. Bobick,et al.  Recognition of Visual Activities and Interactions by Stochastic Parsing , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[187]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[188]  Rama Chellappa,et al.  From sample similarity to ensemble similarity: probabilistic distance measures in reproducing kernel Hilbert space , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[189]  Rama Chellappa,et al.  A system identification approach for video-based face recognition , 2004, ICPR 2004.

[190]  Rama Chellappa,et al.  Identification of humans using gait , 2004, IEEE Transactions on Image Processing.

[191]  Mubarak Shah,et al.  Actions sketch: a novel action representation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[192]  Jitendra Malik,et al.  Automatic Symbolic Traffic Scene Analysis Using Belief Networks , 1994, AAAI.

[193]  K.A. Gallivan,et al.  Efficient algorithms for inferences on Grassmann manifolds , 2004, IEEE Workshop on Statistical Signal Processing, 2003.

[194]  Robert B. Fisher,et al.  Hidden Markov Models for Optical Flow Analysis in Crowds , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[195]  Rémi Ronfard,et al.  Free viewpoint action recognition using motion history volumes , 2006, Comput. Vis. Image Underst..

[196]  Tanveer F. Syeda-Mahmood,et al.  Invariance in motion analysis of videos , 2003, ACM Multimedia.

[197]  Aaron F. Bobick,et al.  Learning visual behavior for gesture analysis , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[198]  Haibin Ling,et al.  Shape Classification Using the Inner-Distance , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[199]  Rama Chellappa,et al.  Modeling Age Progression in Young Faces , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).