Development of tip-enhanced optical spectroscopy for biological applications: a review

Tip-enhanced optical spectroscopy is an approach that holds a good deal of promise for the nanoscale characterisation of matter. Tip-enhanced Raman spectroscopy (TERS) has been demonstrated on a variety of samples: inorganic, organic and biological. Imaging using TERS has been shown for carbon nanotubes due to their high scattering efficiency. There are a number of compelling motivations to consider alternative approaches for biological samples; most importantly, the potential for heat damage of biomolecules and long acquisition times. These issues may be addressed through the development of tip-enhanced coherent anti-Stokes Raman scattering microscopy.

[1]  J. Aizpurua,et al.  Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe , 2003 .

[2]  F. Keilmann,et al.  Complex optical constants on a subwavelength scale. , 2000, Physical review letters.

[3]  E. Betzig,et al.  Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit , 1992, Science.

[4]  Alistair Elfick,et al.  Simulations of tip‐enhanced optical microscopy reveal atomic resolution , 2008, Journal of microscopy.

[5]  B. Ren,et al.  Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching , 2004 .

[6]  Dai Zhang,et al.  Toward Raman fingerprints of single dye molecules at atomically smooth Au(111). , 2006, Journal of the American Chemical Society.

[7]  Dai Zhang,et al.  Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement , 2009 .

[8]  X. Xie,et al.  Near-field fluorescence microscopy based on two-photon excitation with metal tips , 1999 .

[9]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[10]  Jian Wang,et al.  Nanoscale imaging of carbon nanotubes using tip enhanced Raman spectroscopy in reflection mode. , 2006, Faraday discussions.

[11]  T. Witting,et al.  Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface , 2004 .

[12]  B. Mangum,et al.  Resolving single fluorophores within dense ensembles: contrast limits of tip-enhanced fluorescence microscopy. , 2008, Optics express.

[13]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[14]  M D Duncan,et al.  Scanning coherent anti-Stokes Raman microscope. , 1982, Optics letters.

[15]  Markus B. Raschke,et al.  Scanning-probe Raman spectroscopy with single-molecule sensitivity , 2006 .

[16]  L. Novotný,et al.  Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. , 2007, Nano letters.

[17]  S. Kawata,et al.  Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging. , 2004, Physical review letters.

[18]  Renato Zenobi,et al.  Tip-Enhanced Raman Spectroscopy Can See More: The Case of Cytochrome c , 2008 .

[19]  M. Welland,et al.  PHOTON EMISSION FROM SI(111)-(7 X 7) INDUCED BY SCANNING TUNNELING MICROSCOPY : ATOMIC SCALE AND MATERIAL CONTRAST , 1998 .

[20]  N. F. van Hulst,et al.  Imaging soft samples in liquid with tuning fork based shear force microscopy , 2000 .

[21]  Gerhard Ertl,et al.  Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. , 2004, Physical review letters.

[22]  Alistair Elfick,et al.  A versatile CARS microscope for biological imaging , 2009 .

[23]  Y. Gan Invited review article: a review of techniques for attaching micro- and nanoparticles to a probe's tip for surface force and near-field optical measurements. , 2007, The Review of scientific instruments.

[24]  Katrin F. Domke,et al.  Enhanced Raman spectroscopy: Single molecules or carbon? , 2007 .

[25]  R. McKendry,et al.  Frequency modulation atomic force microscopy: a dynamic measurement technique for biological systems , 2005 .

[26]  E. Betzig,et al.  Combined shear force and near‐field scanning optical microscopy , 1992 .

[27]  Conor L Evans,et al.  Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Richard D. Schaller,et al.  Chemically selective imaging of subcellular structure in human hepatocytes with coherent anti-stokes raman scattering (CARS) near-field scanning optical microscopy (NSOM) , 2002 .

[29]  Volker Deckert,et al.  Surface- and tip-enhanced Raman scattering of DNA components† , 2006 .

[30]  K. Karrai,et al.  Piezoelectric tip‐sample distance control for near field optical microscopes , 1995 .

[31]  Jürgen Popp,et al.  Raman to the limit: tip‐enhanced Raman spectroscopic investigations of a single tobacco mosaic virus , 2009 .

[32]  T. Kodama,et al.  Development of apertureless near‐field scanning optical microscope tips for tip‐enhanced Raman spectroscopy , 2008, Journal of microscopy.

[33]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[34]  R. Zenobi,et al.  Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips , 2007, Analytical and bioanalytical chemistry.

[35]  Lin,et al.  Plasmons and optical properties of carbon nanotubes. , 1994, Physical review. B, Condensed matter.

[36]  S. H. Pan,et al.  Vacuum tunneling of superconducting quasiparticles from atomically sharp scanning tunneling microscope tips , 1998 .

[37]  Gerhard Ertl,et al.  Tip‐enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields , 2005 .

[38]  J. Mannhart,et al.  Force Microscopy with Light-Atom Probes , 2004, Science.

[39]  Weihua Zhang,et al.  Tip-enhanced Raman Spectroscopy - Its status, challenges and future directions , 2009 .

[40]  Gengfeng Zheng,et al.  Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. , 2002, Biophysical journal.

[41]  Y. Martin,et al.  Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution , 1995, Science.

[42]  K. Uosaki,et al.  Raman scattering of aryl isocyanide monolayers on atomically flat Au(111) single crystal surfaces enhanced by gap-mode plasmon excitation , 2008 .

[43]  Jürgen Popp,et al.  On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  Christian Hafner,et al.  Nanoscale roughness on metal surfaces can increase tip-enhanced Raman scattering by an order of magnitude. , 2007, Nano letters.

[45]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[46]  Jürgen Popp,et al.  Towards a detailed understanding of bacterial metabolism--spectroscopic characterization of Staphylococcus epidermidis. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[47]  S. Kawata,et al.  Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification. , 2009, Optics express.

[48]  Jean-Jacques Greffet,et al.  Thermal radiation scanning tunnelling microscopy , 2006, Nature.

[49]  I. Notingher,et al.  Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips. , 2005, The journal of physical chemistry. B.

[50]  S. Kawata,et al.  Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy , 2003 .

[51]  Satoshi Kawata,et al.  Near-field Raman scattering enhanced by a metallized tip , 2001 .

[52]  Thomas Taubner,et al.  Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution. , 2006, Nano letters.

[53]  Lukas Novotny,et al.  Nanoscale vibrational analysis of single-walled carbon nanotubes. , 2005, Journal of the American Chemical Society.

[54]  Satoshi Kawata,et al.  Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip , 2009 .

[55]  Julian Moger,et al.  Imaging metal oxide nanoparticles in biological structures with CARS microscopy. , 2008, Optics express.

[56]  D. Richards,et al.  Etching gold tips suitable for tip-enhanced near-field optical microscopy. , 2009, The Review of scientific instruments.

[57]  A. Downes,et al.  Simulations of atomic resolution tip-enhanced optical microscopy. , 2006, Optics express.

[58]  Neil A. Anderson,et al.  Tip‐enhanced optical spectroscopy for surface analysis in biosciences , 2006 .

[59]  L. Novotný,et al.  Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes , 2003, Science.

[60]  W. R. Wiley,et al.  Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering , 1999 .

[61]  Petru Ghenuche,et al.  Spectroscopic mode mapping of resonant plasmon nanoantennas. , 2008, Physical review letters.

[62]  Weihua Zhang,et al.  Near-Field Heating, Annealing, and Signal Loss in Tip-Enhanced Raman Spectroscopy , 2008 .

[63]  Alistair Elfick,et al.  Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy. , 2006, The journal of physical chemistry. B.

[64]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[65]  L. Novotný,et al.  Subsurface Raman imaging with nanoscale resolution. , 2006, Nano letters.