Simple Output Feedback based Control Strategy for Hyperchaotic Systems

This paper proposes a novel method for controlling specific hyperchaotic systems with use of output feedback control strategies. For this, a simple linear controller for hyperchaotic systems using output feedback scheme to achieve stabilization of the underlying system is proposed. To achieve this purpose, an appropriate Lyapunov function is selected and bounds on control parameters are designed explicitly. Finally, some numerical simulations are presented for hyperchaotic Lorenz system to verify and validate the theoretical results.

[1]  Zhenya Yan,et al.  Controlling hyperchaos in the new hyperchaotic Chen system , 2005, Appl. Math. Comput..

[2]  O. Rössler An equation for hyperchaos , 1979 .

[3]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[4]  Indra Narayan Kar,et al.  Contraction theory based adaptive synchronization of chaotic systems , 2009 .

[5]  Satnesh Singh,et al.  Sliding mode control-based stabilisation and secure communication scheme for hyperchaotic systems , 2012, Int. J. Autom. Control..

[6]  H. Haken,et al.  Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[7]  Jinhu Lu,et al.  Parameters identification and synchronization of chaotic systems based upon adaptive control , 2002 .

[8]  Qigui Yang,et al.  Hyperchaotic attractors from a linearly controlled Lorenz system , 2009 .

[9]  Guanrong Chen,et al.  Hyperchaos evolved from the generalized Lorenz equation , 2005, Int. J. Circuit Theory Appl..

[10]  Robin J. Evans,et al.  Control of chaos: Methods and applications in engineering, , 2005, Annu. Rev. Control..

[11]  王发强,et al.  Hyperchaos evolved from the Liu chaotic system , 2006 .

[12]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[13]  Bharat Bhushan Sharma,et al.  Novel adaptive feedback synchronization scheme for a class of chaotic systems with and without parametric uncertainty , 2016 .

[14]  Xinghuo Yu Controlling Lorenz chaos , 1996, Int. J. Syst. Sci..

[15]  Peng,et al.  Synchronizing hyperchaos with a scalar transmitted signal. , 1996, Physical review letters.

[16]  Roberto Barrio,et al.  When chaos meets hyperchaos: 4D Rössler model , 2015 .

[17]  Indra Narayan Kar,et al.  Observer-based synchronization scheme for a class of chaotic systems using contraction theory , 2011 .

[18]  Xinghuo Yu,et al.  An invariant-manifold-based method for chaos control , 2001 .

[19]  Baier,et al.  Design of hyperchaotic flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Guanrong Chen,et al.  A HYPERCHAOS GENERATED FROM CHEN'S SYSTEM , 2006 .

[21]  Giuseppe Grassi,et al.  New 3D-scroll attractors in hyperchaotic Chua's Circuits Forming a Ring , 2003, Int. J. Bifurc. Chaos.

[22]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[23]  L. Chua,et al.  Experimental hyperchaos in coupled Chua's circuits , 1994 .

[24]  Guanrong Chen,et al.  Static output-feedback fuzzy controller for Chen's chaotic system with uncertainties , 2003, Inf. Sci..

[25]  Mingjun Wang Controlling Liu Chaotic System with Feedback Method and Its Circuit Realization , 2016 .

[26]  Guanrong Chen,et al.  Generating Hyperchaos via State Feedback Control , 2005, Int. J. Bifurc. Chaos.