Positive feedback in cellular control systems

Feedback loops have been identified in a variety of regulatory systems and organisms. While feedback loops of the same type (negative or positive) tend to have properties in common, they can play distinctively diverse roles in different regulatory systems, where they can affect virulence in a pathogenic bacterium, maturation patterns of vertebrate oocytes and transitions through cell cycle phases in eukaryotic cells. This review focuses on the properties and functions of positive feedback in biological systems, including bistability, hysteresis and activation surges. BioEssays 30:542–555, 2008. © 2008 Wiley Periodicals, Inc.

[1]  D. Dubnau,et al.  Bistability in the Bacillus subtilis K‐state (competence) system requires a positive feedback loop , 2005, Molecular microbiology.

[2]  D. Lauffenburger,et al.  Physicochemical modelling of cell signalling pathways , 2006, Nature Cell Biology.

[3]  Pablo A. Iglesias,et al.  MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast , 2007, Nature.

[4]  S. Mangan,et al.  Article number: 2005.0006 , 2022 .

[5]  R. Goldberger Autogenous Regulation of Gene Expression , 1974, Science.

[6]  John Ian Ferrell,et al.  Detection of multi-stability , 2004 .

[7]  Farren J. Isaacs,et al.  Prediction and measurement of an autoregulatory genetic module , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Mckinney,et al.  Microbial phenotypic heterogeneity and antibiotic tolerance. , 2007, Current opinion in microbiology.

[9]  S. Leibler,et al.  Biological rhythms: Circadian clocks limited by noise , 2000, Nature.

[10]  Bernard Martin,et al.  Induction of competence regulons as a general response to stress in gram-positive bacteria. , 2006, Annual review of microbiology.

[11]  A. Goldbeter,et al.  Bistability without Hysteresis in Chemical Reaction Systems: A Theoretical Analysis of Irreversible Transitions between Multiple Steady States , 1997 .

[12]  Joachim O Rädler,et al.  Basal expression rate of comK sets a ‘switching‐window’ into the K‐state of Bacillus subtilis , 2007, Molecular microbiology.

[13]  J. Hoch,et al.  Two-component signal transduction , 1995 .

[14]  A. Goldbeter Computational approaches to cellular rhythms , 2002, Nature.

[15]  Michael J Rust,et al.  References and Notes Supporting Online Material Materials and Methods Figs. S1 to S8 Tables S1 to S3 References Ordered Phosphorylation Governs Oscillation of a Three-protein Circadian Clock , 2022 .

[16]  M. Savageau Comparison of classical and autogenous systems of regulation in inducible operons , 1974, Nature.

[17]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[18]  Oscar P. Kuipers,et al.  Phenotypic variation in bacteria: the role of feedback regulation , 2006, Nature Reviews Microbiology.

[19]  M. Buttner,et al.  The vancomycin resistance VanRS two‐component signal transduction system of Streptomyces coelicolor , 2006, Molecular microbiology.

[20]  U. Bhalla,et al.  Emergent properties of networks of biological signaling pathways. , 1999, Science.

[21]  Akinori Kato,et al.  A connector of two-component regulatory systems promotes signal amplification and persistence of expression , 2007, Proceedings of the National Academy of Sciences.

[22]  Ann M Stock,et al.  Two-component signal transduction. , 2000, Annual review of biochemistry.

[23]  M. Freeman Feedback control of intercellular signalling in development , 2000, Nature.

[24]  J. Demongeot,et al.  Positive and negative feedback: striking a balance between necessary antagonists. , 2002, Journal of theoretical biology.

[25]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Thieffry,et al.  Dynamical behaviour of biological regulatory networks—I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state , 1995 .

[27]  E. Robinson Cybernetics, or Control and Communication in the Animal and the Machine , 1963 .

[28]  Simon V. Avery,et al.  Microbial cell individuality and the underlying sources of heterogeneity , 2006, Nature Reviews Microbiology.

[29]  Akira Ishihama,et al.  Transcriptional response of Escherichia coli to external copper , 2005, Molecular microbiology.

[30]  Gürol M. Süel,et al.  An excitable gene regulatory circuit induces transient cellular differentiation , 2006, Nature.

[31]  A Goldbeter,et al.  A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Ferrell,et al.  Bistability in the JNK cascade , 2001, Current Biology.

[33]  S. Leibler,et al.  Mechanisms of noise-resistance in genetic oscillators , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  U. Alon,et al.  Ordering Genes in a Flagella Pathway by Analysis of Expression Kinetics from Living Bacteria , 2001, Science.

[35]  K. Hellingwerf,et al.  Autoamplification of a Two-Component Regulatory System Results in “Learning” Behavior , 2001, Journal of bacteriology.

[36]  Guanghua Huang,et al.  Bistable expression of WOR1, a master regulator of white–opaque switching in Candida albicans , 2006, Proceedings of the National Academy of Sciences.

[37]  J. Claverys,et al.  Development of competence in Streptococcus pneumoniae: pheromone autoinduction and control of quorum sensing by the oligopeptide permease , 1998, Molecular microbiology.

[38]  E. Gilles,et al.  Analysis of two-component signal transduction by mathematical modeling using the KdpD/KdpE system of Escherichia coli. , 2004, Bio Systems.

[39]  P. Lásló,et al.  Multilineage Transcriptional Priming and Determination of Alternate Hematopoietic Cell Fates , 2006, Cell.

[40]  M. Laub,et al.  Specificity in two-component signal transduction pathways. , 2007, Annual review of genetics.

[41]  M. Borodovsky,et al.  Control of Streptococcus pyogenes virulence: modeling of the CovR/S signal transduction system. , 2007, Journal of theoretical biology.

[42]  J. Ferrell,et al.  A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision , 2003, Nature.

[43]  U. Alon,et al.  Just-in-time transcription program in metabolic pathways , 2004, Nature Genetics.

[44]  John J. Tyson,et al.  Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Adam P. Arkin,et al.  eScholarship Title Supplemental Data : Stochastic Gene Expression in a Lentiviral Positive Feedback Loop : HIV-1 Tat Fluctuations Drive Phenotypic Diversity Permalink , 2005 .

[46]  Michael A. Savageau,et al.  Significance of autogenously regulated and constitutive synthesis of regulatory proteins in repressible biosynthetic systems , 1975, Nature.

[47]  A. Arkin,et al.  Simulation of prokaryotic genetic circuits. , 1998, Annual review of biophysics and biomolecular structure.

[48]  J. Raser,et al.  Positive feedback regulates switching of phosphate transporters in S. cerevisiae. , 2007, Molecular cell.

[49]  D. Dubnau,et al.  Noise in Gene Expression Determines Cell Fate in Bacillus subtilis , 2007, Science.

[50]  James R. Brown,et al.  Evolution of two-component signal transduction. , 2000, Molecular biology and evolution.

[51]  J. Tyson,et al.  Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. , 2001, Journal of theoretical biology.

[52]  D. Dubnau,et al.  A ComGA‐dependent checkpoint limits growth during the escape from competence , 2001, Molecular microbiology.

[53]  Uri Alon,et al.  Response delays and the structure of transcription networks. , 2003, Journal of molecular biology.

[54]  J. Tyson,et al.  Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. , 1993, Journal of cell science.

[55]  Kwang-Hyun Cho,et al.  Coupled positive and negative feedback circuits form an essential building block of cellular signaling pathways. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[56]  Corinne L Williams,et al.  Autoregulation Is Essential for Precise Temporal and Steady-State Regulation by the Bordetella BvgAS Phosphorelay , 2006, Journal of bacteriology.

[57]  James E. Ferrell,et al.  Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. , 2001, Chaos.

[58]  M. Mackey,et al.  Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data. , 2003, Biophysical journal.

[59]  J. Griffith Mathematics of cellular control processes. II. Positive feedback to one gene. , 1968, Journal of theoretical biology.

[60]  Oscar P Kuipers,et al.  Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis , 2005, Molecular microbiology.

[61]  D. Tzamarias,et al.  A Yeast Catabolic Enzyme Controls Transcriptional Memory , 2007, Current Biology.

[62]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[63]  A. Keller,et al.  Model genetic circuits encoding autoregulatory transcription factors. , 1995, Journal of theoretical biology.

[64]  Marc W. Kirschner,et al.  Cyclin activation of p34 cdc2 , 1990, Cell.

[65]  Araceli M. Huerta,et al.  From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[66]  Ertugrul M. Ozbudak,et al.  Multistability in the lactose utilization network of Escherichia coli , 2004, Nature.

[67]  J. Ferrell,et al.  Interlinked Fast and Slow Positive Feedback Loops Drive Reliable Cell Decisions , 2005, Science.

[68]  B. Séraphin,et al.  Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion , 2001, The EMBO journal.

[69]  Mark Ptashne,et al.  A Genetic Switch, Phage Lambda Revisited , 2004 .

[70]  E. Groisman,et al.  Making informed decisions: regulatory interactions between two-component systems. , 2003, Trends in microbiology.

[71]  F. Cross,et al.  Testing a mathematical model of the yeast cell cycle. , 2002, Molecular biology of the cell.

[72]  J Jesty,et al.  Mathematical analysis of activation thresholds in enzyme-catalyzed positive feedbacks: application to the feedbacks of blood coagulation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[73]  B. Müller-Hill The lac Operon: A Short History of a Genetic Paradigm , 1996 .

[74]  Katherine C. Chen,et al.  Kinetic analysis of a molecular model of the budding yeast cell cycle. , 2000, Molecular biology of the cell.

[75]  M. Inouye,et al.  Histidine Kinases in Signal Transduction , 2002 .

[76]  James E. Ferrell,et al.  Systems-Level Dissection of the Cell-Cycle Oscillator: Bypassing Positive Feedback Produces Damped Oscillations , 2005, Cell.

[77]  Alexander van Oudenaarden,et al.  Stochastic Gene Expression: from Single Molecules to the Proteome This Review Comes from a Themed Issue on Chromosomes and Expression Mechanisms Edited Measuring Noise Mrna Fluctuations , 2022 .

[78]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[79]  B. Slepchenko,et al.  Cyclin aggregation and robustness of bio-switching. , 2003, Molecular biology of the cell.

[80]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[81]  J E Ferrell,et al.  The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. , 1998, Science.

[82]  Nicholas T Ingolia,et al.  Topology and Robustness in the Drosophila Segment Polarity Network , 2004, PLoS biology.

[83]  J. Hasty,et al.  Synchronizing genetic relaxation oscillators by intercell signaling , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Andreas Radbruch,et al.  GATA-3 transcriptional imprinting in Th2 lymphocytes: A mathematical model , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Eduardo A. Groisman,et al.  The Pleiotropic Two-Component Regulatory System PhoP-PhoQ , 2001, Journal of bacteriology.

[86]  R. Losick,et al.  Bistability in bacteria , 2006, Molecular microbiology.

[87]  James E. Ferrell,et al.  The JNK Cascade as a Biochemical Switch in Mammalian Cells Ultrasensitive and All-or-None Responses , 2003, Current Biology.

[88]  From bistability to oscillations in a model for the isocitrate dehydrogenase reaction. , 1998, Biophysical chemistry.

[89]  Kathy Chen,et al.  Network dynamics and cell physiology , 2001, Nature Reviews Molecular Cell Biology.

[90]  Douglas A Lauffenburger,et al.  Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. , 2002, Development.

[91]  F. Allgöwer,et al.  Bistability Analyses of a Caspase Activation Model for Receptor-induced Apoptosis* , 2004, Journal of Biological Chemistry.

[92]  Péter Érdi,et al.  Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models , 1989 .

[93]  Dongwoo Shin,et al.  A Positive Feedback Loop Promotes Transcription Surge That Jump-Starts Salmonella Virulence Circuit , 2006, Science.

[94]  Sierd Bron,et al.  Stripping Bacillus: ComK auto‐stimulation is responsible for the bistable response in competence development , 2005, Molecular microbiology.

[95]  J E Ferrell,et al.  How regulated protein translocation can produce switch-like responses. , 1998, Trends in biochemical sciences.

[96]  J. Raser,et al.  Noise in Gene Expression: Origins, Consequences, and Control , 2005, Science.

[97]  Eduardo Sontag,et al.  Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 , 2003, Nature Cell Biology.

[98]  T. Elston,et al.  Stochasticity in gene expression: from theories to phenotypes , 2005, Nature Reviews Genetics.

[99]  Jeff Hasty,et al.  Designer gene networks: Towards fundamental cellular control. , 2001, Chaos.

[100]  Cooperativity: a unified view. , 1997, Biochimica et biophysica acta.

[101]  J. Ferrell Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. , 2002, Current opinion in cell biology.

[102]  B. Slepchenko,et al.  Bio-switches: what makes them robust? , 2004, Current opinion in genetics & development.

[103]  M. Wall,et al.  Design of gene circuits: lessons from bacteria , 2004, Nature Reviews Genetics.

[104]  R. Rappuoli,et al.  Positive transcriptional feedback at the bvg locus controls expression of virulence factors in Bordetella pertussis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[105]  F R Adler,et al.  How to make a biological switch. , 2000, Journal of theoretical biology.

[106]  Michael A Savageau,et al.  Signalling network with a bistable hysteretic switch controls developmental activation of the σF transcription factor in Bacillus subtilis , 2006, Molecular microbiology.

[107]  H. E. Umbarger,et al.  Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine. , 1956, Science.