The ConsensusPathDB interaction database: 2013 update

Knowledge of the various interactions between molecules in the cell is crucial for understanding cellular processes in health and disease. Currently available interaction databases, being largely complementary to each other, must be integrated to obtain a comprehensive global map of the different types of interactions. We have previously reported the development of an integrative interaction database called ConsensusPathDB (http://ConsensusPathDB.org) that aims to fulfill this task. In this update article, we report its significant progress in terms of interaction content and web interface tools. ConsensusPathDB has grown mainly due to the integration of 12 further databases; it now contains 215 541 unique interactions and 4601 pathways from overall 30 databases. Binary protein interactions are scored with our confidence assessment tool, IntScore. The ConsensusPathDB web interface allows users to take advantage of these integrated interaction and pathway data in different contexts. Recent developments include pathway analysis of metabolite lists, visualization of functional gene/metabolite sets as overlap graphs, gene set analysis based on protein complexes and induced network modules analysis that connects a list of genes through various interaction types. To facilitate the interactive, visual interpretation of interaction and pathway data, we have re-implemented the graph visualization feature of ConsensusPathDB using the Cytoscape.js library.

[1]  Trey Ideker,et al.  Evidence mining and novelty assessment of protein–protein interactions with the ConsensusPathDB plugin for Cytoscape , 2010, Bioinform..

[2]  Russ B. Altman,et al.  Pharmacogenomics and bioinformatics: PharmGKB. , 2010, Pharmacogenomics.

[3]  Gary D. Bader,et al.  Pathway Commons, a web resource for biological pathway data , 2010, Nucleic Acids Res..

[4]  Bin Zhang,et al.  PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse , 2011, Nucleic Acids Res..

[5]  Ralf Herwig,et al.  ConsensusPathDB—a database for integrating human functional interaction networks , 2008, Nucleic Acids Res..

[6]  Ralf Herwig,et al.  ConsensusPathDB: toward a more complete picture of cell biology , 2010, Nucleic Acids Res..

[7]  C. Mallows,et al.  A Method for Comparing Two Hierarchical Clusterings , 1983 .

[8]  Sylvie Ricard-Blum,et al.  MatrixDB, the extracellular matrix interaction database , 2010, Nucleic Acids Res..

[9]  Chris T. A. Evelo,et al.  WikiPathways: building research communities on biological pathways , 2011, Nucleic Acids Res..

[10]  David S. Wishart,et al.  MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data , 2010, Nucleic Acids Res..

[11]  A. Kamburov,et al.  Human Embryonic Stem Cell Derived Hepatocyte-Like Cells as a Tool for In Vitro Hazard Assessment of Chemical Carcinogenicity , 2011, Toxicological sciences : an official journal of the Society of Toxicology.

[12]  Jun-ichi Sawada,et al.  The Ubiquitin Ligase Activity in the DDB2 and CSA Complexes Is Differentially Regulated by the COP9 Signalosome in Response to DNA Damage , 2003, Cell.

[13]  Ralf Herwig,et al.  Cluster-based assessment of protein-protein interaction confidence , 2012, BMC Bioinformatics.

[14]  Ralf Herwig,et al.  IntScore: a web tool for confidence scoring of biological interactions , 2012, Nucleic Acids Res..

[15]  Patrick Dowd,et al.  The ubiquitin ligase COP1 is a critical negative regulator of p53 , 2004, Nature.

[16]  G. Siuzdak,et al.  Innovation: Metabolomics: the apogee of the omics trilogy , 2012, Nature Reviews Molecular Cell Biology.

[17]  Paul Tempst,et al.  PINdb: a database of nuclear protein complexes from human and yeast , 2004, Bioinform..

[18]  M. Vidal,et al.  Literature-curated protein interaction datasets , 2009, Nature Methods.

[19]  Avi Ma'ayan,et al.  Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases , 2007, BMC Bioinformatics.

[20]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[21]  Matthew R. Laird,et al.  Protein Protein Interaction Network Evaluation for Identifying Potential Drug Targets , 2009 .

[22]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[23]  Gary D Bader,et al.  BioPAX – A community standard for pathway data sharing , 2010, Nature Biotechnology.

[24]  David S. Wishart,et al.  DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs , 2010, Nucleic Acids Res..

[25]  Lucy Skrabanek,et al.  PDZBase: a protein?Cprotein interaction database for PDZ-domains , 2005, Bioinform..

[26]  John T. Wei,et al.  Integrative molecular concept modeling of prostate cancer progression , 2007, Nature Genetics.

[27]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2011 update , 2010, Nucleic Acids Res..

[28]  Gary D. Bader,et al.  The Biomolecular Interaction Network Database in PSI-MI 2.5 , 2011, Database J. Biol. Databases Curation.

[29]  Chi-Ying F. Huang,et al.  PhosphoPOINT: a comprehensive human kinase interactome and phospho-protein database , 2008, ECCB.

[30]  Gary D. Bader,et al.  Pathguide: a Pathway Resource List , 2005, Nucleic Acids Res..

[31]  Illés J. Farkas,et al.  Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery , 2010, Bioinform..

[32]  Gary D Bader,et al.  PSICQUIC and PSISCORE: accessing and scoring molecular interactions , 2011, Nature Methods.

[33]  C. Sander,et al.  The HUPO PSI's Molecular Interaction format—a community standard for the representation of protein interaction data , 2004, Nature Biotechnology.

[34]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[35]  David S. Wishart,et al.  SMPDB: The Small Molecule Pathway Database , 2009, Nucleic Acids Res..

[36]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[37]  M. Vidal,et al.  Literature-curated protein interaction , 2009 .

[38]  Monica Chagoyen,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[39]  Marit Ackermann,et al.  Accounting for Redundancy when Integrating Gene Interaction Databases , 2009, PloS one.

[40]  Lincoln Stein,et al.  Reactome: a database of reactions, pathways and biological processes , 2010, Nucleic Acids Res..

[41]  M. Orešič,et al.  Pathways to the analysis of microarray data. , 2005, Trends in biotechnology.

[42]  Emmanuel D. Levy,et al.  How Perfect Can Protein Interactomes Be? , 2009, Science Signaling.

[43]  Ulrich Stelzl,et al.  Dynamic protein-protein interaction wiring of the human spliceosome. , 2012, Molecular cell.

[44]  Timothy M. D. Ebbels,et al.  Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA , 2011 .

[45]  Yang Song,et al.  Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery , 2011, Nucleic Acids Res..