Expression Dynamics and Protein Localization of Rhabdomeric Opsins in Platynereis Larvae
暂无分享,去创建一个
Gáspár Jékely | N. Randel | G. Jékely | R. Shahidi | Luis A. Bezares-Calderón | Nadine Randel | Réza Shahidi | Martin Gühmann | Martin Gühmann | L. A. Bezares-Calderón
[1] Barbara L. Gibsonm. Cellular and ultrastructural features of the adult and the embryonic eye in the marine gastropod, Ilyanassa obsoleta , 1984, Journal of morphology.
[2] T. Lacalli,et al. Frontal eye circuitry, rostral sensory pathways and brain organization in amphioxus larvae: evidence from 3D reconstructions , 1996 .
[3] D. Arendt,et al. Ciliary Photoreceptors with a Vertebrate-Type Opsin in an Invertebrate Brain , 2004, Science.
[4] D. Arendt,et al. Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. , 2002, Development.
[5] G. Thorson. Light as an ecological factor in the dispersal and settlement of larvae of marine bottom invertebrates , 1964 .
[6] O. Gascuel,et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.
[7] K. Yau,et al. Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity , 2002, Science.
[8] Gáspár Jékely,et al. Cellular resolution expression profiling using confocal detection of NBT/BCIP precipitate by reflection microscopy. , 2007, BioTechniques.
[9] M. Arnone,et al. Unique system of photoreceptors in sea urchin tube feet , 2011, Proceedings of the National Academy of Sciences.
[10] A. Löytynoja,et al. Phylogeny-Aware Gap Placement Prevents Errors in Sequence Alignment and Evolutionary Analysis , 2008, Science.
[11] F. Raible,et al. Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution , 2012, Proceedings of the National Academy of Sciences.
[12] H. Hausen,et al. Mechanism of phototaxis in marine zooplankton , 2008, Nature.
[13] R. M. Eakin,et al. Fine structure of eyespots in tornarian larvae (Phylum: Hemichordata) , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[14] Thorsten Henrich,et al. The normal development of Platynereis dumerilii (Nereididae, Annelida) , 2010, Frontiers in Zoology.
[15] T. Bartolomaeus,et al. Ultrastructure and development of the rhabdomeric eyes in Lineus viridis (Heteronemertea, Nemertea). , 2007, Zoology.
[16] A. Cardona,et al. An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy , 2010, PLoS biology.
[17] Robert C. Edgar,et al. MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.
[18] D. Arendt. Evolution of eyes and photoreceptor cell types. , 2003, The International journal of developmental biology.
[19] D. Arendt,et al. Fluorescent two-color whole mount in situ hybridization in Platynereis dumerilii (Polychaeta, Annelida), an emerging marine molecular model for evolution and development. , 2005, BioTechniques.
[20] D. Arendt,et al. Reconstructing the eyes of Urbilateria. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[21] Karin Nordström,et al. A simple visual system without neurons in jellyfish larvae , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[22] Maxim Teslenko,et al. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.
[23] B. Rhode. Development and differentiation of the eye in Platynereis dumerilii (Annelida, Polychaeta) , 1992, Journal of morphology.
[24] D. Stavenga,et al. Coexpression of Two Visual Pigments in a Photoreceptor Causes an Abnormally Broad Spectral Sensitivity in the Eye of the Butterfly Papilio xuthus , 2003, The Journal of Neuroscience.
[25] Simon G. Sprecher,et al. Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons , 2008, Nature.
[26] K. Martin,et al. mRNA Localization: Gene Expression in the Spatial Dimension , 2009, Cell.
[27] Natascha Hill,et al. Phylogenomic analyses unravel annelid evolution , 2011, Nature.
[28] James C. Wilgenbusch,et al. AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics , 2008, Bioinform..
[29] Michael J. Bok,et al. Molecular diversity of visual pigments in Stomatopoda (Crustacea) , 2009, Visual Neuroscience.
[30] T. Lacalli. Serial EM analysis of a copepod larval nervous system: Naupliar eye, optic circuitry, and prospects for full CNS reconstruction. , 2009, Arthropod structure & development.
[31] R. M. Eakin,et al. Fine structure of the eyes of Pseudoceros canadensis (Turbellaria, Polycladida) , 1981, Zoomorphology.
[32] The larval ocelli of Golfingia misakiana (Sipuncula, Golfingiidae) and of a pelagosphera of another unidentified species , 1997, Zoomorphology.
[33] D. Arendt,et al. Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye , 2012, Proceedings of the National Academy of Sciences.
[34] Akihisa Terakita,et al. The opsins , 2005, Genome Biology.
[35] B. Degnan,et al. Cytological Basis of Photoresponsive Behavior in a Sponge Larva , 2001, The Biological Bulletin.
[36] M. Martindale,et al. Ciliary photoreceptors in the cerebral eyes of a protostome larva , 2011, EvoDevo.
[37] G. Jékely,et al. Antibodies against conserved amidated neuropeptide epitopes enrich the comparative neurobiology toolbox , 2012, EvoDevo.