On A-subsets in lattice implication algebras

[1]  Jan Pavelka,et al.  On Fuzzy Logic I Many-valued rules of inference , 1979, Math. Log. Q..

[2]  Yang Xu,et al.  IFI-ideals of lattice implication algebras , 2013, Int. J. Comput. Intell. Syst..

[3]  Vilém Novák,et al.  First-order fuzzy logic , 1987, Stud Logica.

[4]  Keyun Qin,et al.  ILI-ideals and prime LI-ideals in lattice implication algebras , 2003, Inf. Sci..

[5]  Yi Liu,et al.  Interval-valued intuitionistic (T, S)-fuzzy filters theory on residuated lattices , 2014, Int. J. Mach. Learn. Cybern..

[6]  Qin Ke-yun,et al.  L -valued propositional logic L vpl , 1999 .

[7]  Amal El-Nahas,et al.  Location management techniques for mobile systems , 2000, Inf. Sci..

[8]  Yi Liu,et al.  On derivations of linguistic truth-valued lattice implication algebras , 2018, Int. J. Mach. Learn. Cybern..

[9]  Yang Xu,et al.  On lifting quasi-filters and strong lifting quasi-filters in MV-algebras , 2015, J. Intell. Fuzzy Syst..

[10]  Etienne E. Kerre,et al.  alpha-Resolution principle based on first-order lattice-valued logic LF(X) , 2001, Inf. Sci..

[11]  Xiaohong Zhang,et al.  Lattice-valued interval soft sets - A general frame of many soft set models , 2014, J. Intell. Fuzzy Syst..

[12]  Yang Xu,et al.  Study on the properties of A-subset , 2017, J. Intell. Fuzzy Syst..

[13]  Yang Xu,et al.  Lattice implication ordered semigroups , 2008, Inf. Sci..

[14]  Jun Liu,et al.  Lattice-Valued Logic - An Alternative Approach to Treat Fuzziness and Incomparability , 2003, Studies in Fuzziness and Soft Computing.

[15]  J. A. Goguen,et al.  The logic of inexact concepts , 1969, Synthese.

[16]  Liu Yi,et al.  Multi-ary α-semantic resolution automated reasoning based on lattice-valued first-order logic LF ( X) 1 , 2015 .

[17]  Yang Xu,et al.  2-dimension Linguistic Computational Model with 2-tuples for Multi-attribute Group Decision Making , 2016, Knowl. Based Syst..

[18]  Yang Xu,et al.  Fuzzy logic from the viewpoint of machine intelligence , 2006, Fuzzy Sets Syst..