Strong positivity for quantum theta bases of quantum cluster algebras
暂无分享,去创建一个
[1] Frances Kirwan,et al. An Introduction to Intersection Homology Theory, Second Edition , 2006 .
[2] H. Whitney. Tangents to an Analytic Variety , 1965 .
[3] M. Gross,et al. Birational geometry of cluster algebras , 2013, 1309.2573.
[4] The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli , 2002, math/0204059.
[5] Pierrick Bousseau. Quantum mirrors of log Calabi–Yau surfaces and higher-genus curve counting , 2018, Compositio Mathematica.
[6] A. King. MODULI OF REPRESENTATIONS OF FINITE DIMENSIONAL ALGEBRAS , 1994 .
[7] A. Schofield. General Representations of Quivers , 1992 .
[8] Nadim Rustom. Cohomology of Quiver Moduli , 2011 .
[9] Pierrick Bousseau. The quantum tropical vertex , 2018, Geometry & Topology.
[10] A. Efimov. Cohomological Hall algebra of a symmetric quiver , 2011, Compositio Mathematica.
[11] Bernd S Siebert,et al. A Tropical View on Landau–Ginzburg Models , 2022, Acta Mathematica Sinica, English Series.
[12] M. Gross,et al. Intrinsic Mirror Symmetry , 2019, 1909.07649.
[13] Tsuyoshi Murata,et al. {m , 1934, ACML.
[14] A. Zelevinsky,et al. Quantum cluster algebras , 2004, math/0404446.
[15] J. Stoppa,et al. Block–Göttsche invariants from wall-crossing , 2012, Compositio Mathematica.
[16] Grigory Mikhalkin,et al. Quantum indices and refined enumeration of real plane curves , 2015, 1505.04338.
[17] M. Gross,et al. Mirror symmetry for log Calabi-Yau surfaces I , 2011, Publications mathématiques de l'IHÉS.
[18] Ralf Schiffler,et al. Positivity for cluster algebras , 2013, 1306.2415.
[19] L. Williams,et al. Bases for cluster algebras from surfaces , 2011, Compositio Mathematica.
[20] Timothy Magee. Littlewood–Richardson coefficients via mirror symmetry for cluster varieties , 2017, Proceedings of the London Mathematical Society.
[21] From real affine geometry to complex geometry , 2007, math/0703822.
[22] H. Nakajima. Quiver varieties and cluster algebras , 2009, 0905.0002.
[23] M. Gross,et al. The tropical vertex , 2009, 0902.0779.
[24] Cluster ensembles, quantization and the dilogarithm , 2003, math/0311245.
[25] A. Zelevinsky,et al. Greedy bases in rank 2 quantum cluster algebras , 2014, Proceedings of the National Academy of Sciences.
[26] George Lusztig,et al. Canonical bases arising from quantized enveloping algebras , 1990 .
[27] Timothy Magee. Fock-Goncharov conjecture and polyhedral cones for $U \subset SL_n$ and base affine space $SL_n /U$ , 2015, 1502.03769.
[30] Dylan G. L. Allegretti. Categorified canonical bases and framed BPS states , 2018, Selecta Mathematica.
[31] C. Geiss,et al. Quantum cluster algebras and their specializations , 2018, 1807.09826.
[32] Travis Mandel,et al. Refined tropical curve counts and canonical bases for quantum cluster algebras , 2015 .
[33] T. Bridgeland. Scattering diagrams, Hall algebras and stability conditions , 2016, Algebraic Geometry.
[34] Fan Qin. Triangular bases in quantum cluster algebras and monoidal categorification conjectures , 2015, 1501.04085.
[35] Hyun Kyu Kim,et al. Laurent Positivity of Quantized Canonical Bases for Quantum Cluster Varieties from Surfaces , 2017, Communications in Mathematical Physics.
[36] Yan Soibelman,et al. Stability structures, motivic Donaldson-Thomas invariants and cluster transformations , 2008, 0811.2435.
[37] D. Maulik,et al. Purity for graded potentials and quantum cluster positivity , 2013, Compositio Mathematica.
[38] Fan Qin. Bases for upper cluster algebras and tropical points , 2019, Journal of the European Mathematical Society.
[39] Tony Yue Yu,et al. The Frobenius structure theorem for affine log Calabi-Yau varieties containing a torus , 2019, Annals of Mathematics.
[40] M. Gross,et al. Theta functions on varieties with effective anti-canonical class , 2016, Memoirs of the American Mathematical Society.
[41] K. Nagao. Donaldson-Thomas theory and cluster algebras , 2010, 1002.4884.
[42] M. Kontsevich,et al. Affine Structures and Non-Archimedean Analytic Spaces , 2004, math/0406564.
[43] Ben Davison. Positivity for quantum cluster algebras , 2016, 1601.07918.
[44] R. Moody,et al. On infinite root systems , 1989 .
[45] R. M. Goresky,et al. Triangulation of stratified objects , 1978 .
[46] S. Fomin,et al. Cluster algebras I: Foundations , 2001, math/0104151.
[47] Ben Davison,et al. Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras , 2016, Inventiones mathematicae.
[48] Greg Muller,et al. The greedy basis equals the theta basis: A rank two haiku , 2015, J. Comb. Theory A.
[49] Travis Mandel. Theta bases are atomic , 2016, Compositio Mathematica.
[50] G. Lusztig. Total Positivity in Reductive Groups , 2019 .
[51] R. Remmert,et al. European Mathematical Society , 1994 .
[52] Paul Hacking,et al. Canonical bases for cluster algebras , 2014, 1411.1394.
[53] D. Thurston. Positive basis for surface skein algebras , 2013, Proceedings of the National Academy of Sciences.
[54] A. Beilinson. Coherent sheaves on Pn and problems of linear algebra , 1978 .
[55] M. Kontsevich,et al. Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and Mirror Symmetry , 2013, 1303.3253.
[56] Joydeep Ghosh,et al. Cluster ensembles , 2011, Data Clustering: Algorithms and Applications.
[57] Lieven Le Bruyn,et al. Semisimple representations of quivers , 1990 .
[58] Dylan G. L. Allegretti,et al. A duality map for quantum cluster varieties from surfaces , 2015, 1509.01567.
[59] Seok-Jin Kang,et al. Monoidal categorification of cluster algebras , 2014, 1412.8106.
[60] B. Leclerc,et al. Cluster algebras and quantum affine algebras , 2009, 0903.1452.
[61] M. Gross. Mirror symmetry for P^2 and tropical geometry , 2009, 0903.1378.
[62] Travis Mandel,et al. Scattering diagrams, theta functions, and refined tropical curve counts , 2015, Journal of the London Mathematical Society.
[63] S. Lojasiewicz,et al. Triangulation of semi-analytic sets , 1964 .
[64] M. Kontsevich,et al. Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants , 2010, 1006.2706.
[65] M. Reineke. Cohomology of quiver moduli, functional equations, and integrality of Donaldson–Thomas type invariants , 2009, Compositio Mathematica.
[66] Travis Mandel. Cluster algebras are Cox rings , 2017, manuscripta mathematica.
[67] M. Gross,et al. Quivers, curves, and the tropical vertex , 2009, 0909.5153.
[68] Anatol N. Kirillov. Dilogarithm identities , 1994 .
[69] Travis Mandel,et al. Donaldson–Thomas invariants from tropical disks , 2019, Selecta Mathematica.
[70] Travis Mandel. Theta bases and log Gromov-Witten invariants of cluster varieties , 2019, Transactions of the American Mathematical Society.
[71] Lang Mou. Scattering diagrams of quivers with potentials and mutations , 2019, 1910.13714.
[72] V. Kac. Infinite root systems, representations of graphs and invariant theory , 1980 .
[73] M. Reineke,et al. Donaldson–Thomas invariants versus intersection cohomology of quiver moduli , 2014, Journal für die reine und angewandte Mathematik (Crelles Journal).
[74] B. Keller. On cluster theory and quantum dilogarithm identities , 2011, 1102.4148.
[75] Mixed Hodge structures of configuration spaces , 1995, alg-geom/9510018.
[76] Pierrick Bousseau. Tropical refined curve counting from higher genera and lambda classes , 2017, Inventiones mathematicae.
[77] Dylan G. L. Allegretti. A duality map for the quantum symplectic double , 2016 .
[78] M. Reineke,et al. Semistable Chow–Hall algebras of quivers and quantized Donaldson–Thomas invariants , 2015, Algebra & Number Theory.
[79] Quivers , 2021, A Gentle Introduction to Homological Mirror Symmetry.