Strong positivity for quantum theta bases of quantum cluster algebras

We construct “quantum theta bases,” extending the set of quantum cluster monomials, for various versions of skew-symmetric quantum cluster algebras. These bases consist precisely of the indecomposable universally positive elements of the algebras they generate, and the structure constants for their multiplication are Laurent polynomials in the quantum parameter with non-negative integer coefficients, proving the quantum strong cluster positivity conjecture for these algebras. The classical limits recover the theta bases considered by Gross–Hacking–Keel–Kontsevich (J Am Math Soc 31(2):497–608, 2018). Our approach combines the scattering diagram techniques used in loc. cit. with the Donaldson–Thomas theory of quivers.

[1]  Frances Kirwan,et al.  An Introduction to Intersection Homology Theory, Second Edition , 2006 .

[2]  H. Whitney Tangents to an Analytic Variety , 1965 .

[3]  M. Gross,et al.  Birational geometry of cluster algebras , 2013, 1309.2573.

[4]  The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli , 2002, math/0204059.

[5]  Pierrick Bousseau Quantum mirrors of log Calabi–Yau surfaces and higher-genus curve counting , 2018, Compositio Mathematica.

[6]  A. King MODULI OF REPRESENTATIONS OF FINITE DIMENSIONAL ALGEBRAS , 1994 .

[7]  A. Schofield General Representations of Quivers , 1992 .

[8]  Nadim Rustom Cohomology of Quiver Moduli , 2011 .

[9]  Pierrick Bousseau The quantum tropical vertex , 2018, Geometry & Topology.

[10]  A. Efimov Cohomological Hall algebra of a symmetric quiver , 2011, Compositio Mathematica.

[11]  Bernd S Siebert,et al.  A Tropical View on Landau–Ginzburg Models , 2022, Acta Mathematica Sinica, English Series.

[12]  M. Gross,et al.  Intrinsic Mirror Symmetry , 2019, 1909.07649.

[13]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[14]  A. Zelevinsky,et al.  Quantum cluster algebras , 2004, math/0404446.

[15]  J. Stoppa,et al.  Block–Göttsche invariants from wall-crossing , 2012, Compositio Mathematica.

[16]  Grigory Mikhalkin,et al.  Quantum indices and refined enumeration of real plane curves , 2015, 1505.04338.

[17]  M. Gross,et al.  Mirror symmetry for log Calabi-Yau surfaces I , 2011, Publications mathématiques de l'IHÉS.

[18]  Ralf Schiffler,et al.  Positivity for cluster algebras , 2013, 1306.2415.

[19]  L. Williams,et al.  Bases for cluster algebras from surfaces , 2011, Compositio Mathematica.

[20]  Timothy Magee Littlewood–Richardson coefficients via mirror symmetry for cluster varieties , 2017, Proceedings of the London Mathematical Society.

[21]  From real affine geometry to complex geometry , 2007, math/0703822.

[22]  H. Nakajima Quiver varieties and cluster algebras , 2009, 0905.0002.

[23]  M. Gross,et al.  The tropical vertex , 2009, 0902.0779.

[24]  Cluster ensembles, quantization and the dilogarithm , 2003, math/0311245.

[25]  A. Zelevinsky,et al.  Greedy bases in rank 2 quantum cluster algebras , 2014, Proceedings of the National Academy of Sciences.

[26]  George Lusztig,et al.  Canonical bases arising from quantized enveloping algebras , 1990 .

[27]  Timothy Magee Fock-Goncharov conjecture and polyhedral cones for $U \subset SL_n$ and base affine space $SL_n /U$ , 2015, 1502.03769.

[30]  Dylan G. L. Allegretti Categorified canonical bases and framed BPS states , 2018, Selecta Mathematica.

[31]  C. Geiss,et al.  Quantum cluster algebras and their specializations , 2018, 1807.09826.

[32]  Travis Mandel,et al.  Refined tropical curve counts and canonical bases for quantum cluster algebras , 2015 .

[33]  T. Bridgeland Scattering diagrams, Hall algebras and stability conditions , 2016, Algebraic Geometry.

[34]  Fan Qin Triangular bases in quantum cluster algebras and monoidal categorification conjectures , 2015, 1501.04085.

[35]  Hyun Kyu Kim,et al.  Laurent Positivity of Quantized Canonical Bases for Quantum Cluster Varieties from Surfaces , 2017, Communications in Mathematical Physics.

[36]  Yan Soibelman,et al.  Stability structures, motivic Donaldson-Thomas invariants and cluster transformations , 2008, 0811.2435.

[37]  D. Maulik,et al.  Purity for graded potentials and quantum cluster positivity , 2013, Compositio Mathematica.

[38]  Fan Qin Bases for upper cluster algebras and tropical points , 2019, Journal of the European Mathematical Society.

[39]  Tony Yue Yu,et al.  The Frobenius structure theorem for affine log Calabi-Yau varieties containing a torus , 2019, Annals of Mathematics.

[40]  M. Gross,et al.  Theta functions on varieties with effective anti-canonical class , 2016, Memoirs of the American Mathematical Society.

[41]  K. Nagao Donaldson-Thomas theory and cluster algebras , 2010, 1002.4884.

[42]  M. Kontsevich,et al.  Affine Structures and Non-Archimedean Analytic Spaces , 2004, math/0406564.

[43]  Ben Davison Positivity for quantum cluster algebras , 2016, 1601.07918.

[44]  R. Moody,et al.  On infinite root systems , 1989 .

[45]  R. M. Goresky,et al.  Triangulation of stratified objects , 1978 .

[46]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[47]  Ben Davison,et al.  Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras , 2016, Inventiones mathematicae.

[48]  Greg Muller,et al.  The greedy basis equals the theta basis: A rank two haiku , 2015, J. Comb. Theory A.

[49]  Travis Mandel Theta bases are atomic , 2016, Compositio Mathematica.

[50]  G. Lusztig Total Positivity in Reductive Groups , 2019 .

[51]  R. Remmert,et al.  European Mathematical Society , 1994 .

[52]  Paul Hacking,et al.  Canonical bases for cluster algebras , 2014, 1411.1394.

[53]  D. Thurston Positive basis for surface skein algebras , 2013, Proceedings of the National Academy of Sciences.

[54]  A. Beilinson Coherent sheaves on Pn and problems of linear algebra , 1978 .

[55]  M. Kontsevich,et al.  Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and Mirror Symmetry , 2013, 1303.3253.

[56]  Joydeep Ghosh,et al.  Cluster ensembles , 2011, Data Clustering: Algorithms and Applications.

[57]  Lieven Le Bruyn,et al.  Semisimple representations of quivers , 1990 .

[58]  Dylan G. L. Allegretti,et al.  A duality map for quantum cluster varieties from surfaces , 2015, 1509.01567.

[59]  Seok-Jin Kang,et al.  Monoidal categorification of cluster algebras , 2014, 1412.8106.

[60]  B. Leclerc,et al.  Cluster algebras and quantum affine algebras , 2009, 0903.1452.

[61]  M. Gross Mirror symmetry for P^2 and tropical geometry , 2009, 0903.1378.

[62]  Travis Mandel,et al.  Scattering diagrams, theta functions, and refined tropical curve counts , 2015, Journal of the London Mathematical Society.

[63]  S. Lojasiewicz,et al.  Triangulation of semi-analytic sets , 1964 .

[64]  M. Kontsevich,et al.  Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants , 2010, 1006.2706.

[65]  M. Reineke Cohomology of quiver moduli, functional equations, and integrality of Donaldson–Thomas type invariants , 2009, Compositio Mathematica.

[66]  Travis Mandel Cluster algebras are Cox rings , 2017, manuscripta mathematica.

[67]  M. Gross,et al.  Quivers, curves, and the tropical vertex , 2009, 0909.5153.

[68]  Anatol N. Kirillov Dilogarithm identities , 1994 .

[69]  Travis Mandel,et al.  Donaldson–Thomas invariants from tropical disks , 2019, Selecta Mathematica.

[70]  Travis Mandel Theta bases and log Gromov-Witten invariants of cluster varieties , 2019, Transactions of the American Mathematical Society.

[71]  Lang Mou Scattering diagrams of quivers with potentials and mutations , 2019, 1910.13714.

[72]  V. Kac Infinite root systems, representations of graphs and invariant theory , 1980 .

[73]  M. Reineke,et al.  Donaldson–Thomas invariants versus intersection cohomology of quiver moduli , 2014, Journal für die reine und angewandte Mathematik (Crelles Journal).

[74]  B. Keller On cluster theory and quantum dilogarithm identities , 2011, 1102.4148.

[75]  Mixed Hodge structures of configuration spaces , 1995, alg-geom/9510018.

[76]  Pierrick Bousseau Tropical refined curve counting from higher genera and lambda classes , 2017, Inventiones mathematicae.

[77]  Dylan G. L. Allegretti A duality map for the quantum symplectic double , 2016 .

[78]  M. Reineke,et al.  Semistable Chow–Hall algebras of quivers and quantized Donaldson–Thomas invariants , 2015, Algebra & Number Theory.

[79]  Quivers , 2021, A Gentle Introduction to Homological Mirror Symmetry.