Mitochondrial membrane tension governs fission

During mitochondrial fission, key molecular and cellular factors assemble on the outer mitochondrial membrane, where they coordinate to generate constriction. Constriction sites can eventually divide, or reverse upon disassembly of the machinery. However, a role for membrane tension in mitochondrial fission, although speculated, has remained undefined. We captured the dynamics of constricting mitochondria in mammalian cells using live-cell structured illumination microscopy (SIM). By analyzing the diameters of tubules that emerge from mitochondria and implementing a fluorescence lifetime-based mitochondrial membrane tension sensor, we discovered that mitochondria are indeed under tension. Under perturbations that reduce mitochondrial tension, constrictions initiate at the same rate, but are less likely to divide. We propose a model based on our estimates of mitochondrial membrane tension and bending energy in living cells which accounts for the observed probability distribution for mitochondrial constrictions to divide.

[1]  Ira Milosevic,et al.  Mitochondrial fission requires DRP1 but not dynamins , 2019, Nature.

[2]  R. Loewith,et al.  TORC2 controls endocytosis through plasma membrane tension , 2019, The Journal of cell biology.

[3]  S. Manley,et al.  Mechanosensitive Fluorescent Probes to Image Membrane Tension in Mitochondria, Endoplasmic Reticulum, and Lysosomes. , 2019, Journal of the American Chemical Society.

[4]  M. Ryan,et al.  Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission , 2018, Nature Communications.

[5]  B. Kornmann,et al.  Mechanical forces on cellular organelles , 2018, Journal of Cell Science.

[6]  E. Derivery,et al.  A Fluorescent Membrane Tension Probe , 2018, Nature Chemistry.

[7]  D. Agard,et al.  Structural Basis of Mitochondrial Receptor Binding and Constriction by DRP1 , 2018, Nature.

[8]  H. Higgs,et al.  INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division , 2018, The Journal of cell biology.

[9]  Mathias J. Aebersold,et al.  Mechanical force induces mitochondrial fission , 2017, eLife.

[10]  R. Youle,et al.  Mitochondrial fission facilitates the selective mitophagy of protein aggregates , 2017, The Journal of cell biology.

[11]  Hyo Min Cho,et al.  Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division , 2017, Nature Communications.

[12]  E. Derivery,et al.  Headgroup engineering in mechanosensitive membrane probes. , 2016, Chemical communications.

[13]  G. Voeltz,et al.  Multiple Dynamin family members collaborate to drive mitochondrial division , 2016, Nature.

[14]  J. Nunnari,et al.  ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells , 2016, Science.

[15]  H. Higgs,et al.  Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites , 2015, eLife.

[16]  J. Mears,et al.  Cardiolipin's propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission , 2015, Molecular biology of the cell.

[17]  J. Lippincott-Schwartz,et al.  A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division , 2015, eLife.

[18]  A. Babataheri,et al.  Elastocapillary Instability in Mitochondrial Fission. , 2015, Physical review letters.

[19]  Y. Li,et al.  Dynamic tubulation of mitochondria drives mitochondrial network formation , 2015, Cell Research.

[20]  H. Higgs,et al.  Novel roles for actin in mitochondrial fission , 2014, Journal of Cell Science.

[21]  W. Nickel,et al.  Dynamin-related Protein 1 (Drp1) Promotes Structural Intermediates of Membrane Division* , 2014, The Journal of Biological Chemistry.

[22]  Andrew G. York,et al.  Instant super-resolution imaging in live cells and embryos via analog image processing , 2013, Nature Methods.

[23]  J. Förtsch,et al.  The yeast cell cortical protein Num1 integrates mitochondrial dynamics into cellular architecture , 2013, Journal of Cell Science.

[24]  D. Schwefel,et al.  Structural insights into oligomerization and mitochondrial remodelling of dynamin 1‐like protein , 2013, The EMBO journal.

[25]  T. Betz,et al.  ESCRT-III Assembly and Cytokinetic Abscission Are Induced by Tension Release in the Intercellular Bridge , 2013, Science.

[26]  Clara Franzini-Armstrong,et al.  Kissing and nanotunneling mediate intermitochondrial communication in the heart , 2013, Proceedings of the National Academy of Sciences.

[27]  H. Higgs,et al.  An Actin-Dependent Step in Mitochondrial Fission Mediated by the ER-Associated Formin INF2 , 2013, Science.

[28]  M. Sauer,et al.  rapidSTORM: accurate, fast open-source software for localization microscopy , 2012, Nature Methods.

[29]  G. Cappello,et al.  Membrane Shape at the Edge of the Dynamin Helix Sets Location and Duration of the Fission Reaction , 2012, Cell.

[30]  A. M. van der Bliek,et al.  Mitochondrial Fission, Fusion, and Stress , 2012, Science.

[31]  Chenglong Xia,et al.  Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes , 2012, Proceedings of the National Academy of Sciences.

[32]  Matthew West,et al.  ER Tubules Mark Sites of Mitochondrial Division , 2011, Science.

[33]  Pere Roca-Cusachs,et al.  Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading , 2011, Proceedings of the National Academy of Sciences.

[34]  J. Lippincott-Schwartz,et al.  Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation , 2011, Proceedings of the National Academy of Sciences.

[35]  Ann E. Frazier,et al.  MiD49 and MiD51, new components of the mitochondrial fission machinery , 2011, EMBO reports.

[36]  L. Scorrano,et al.  During autophagy mitochondria elongate, are spared from degradation and sustain cell viability , 2011, Nature Cell Biology.

[37]  R. Youle,et al.  Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells , 2010, The Journal of cell biology.

[38]  J. Mears,et al.  Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission , 2010, Nature Structural &Molecular Biology.

[39]  Badrinath Roysam,et al.  A hyperfused mitochondrial state achieved at G1–S regulates cyclin E buildup and entry into S phase , 2009, Proceedings of the National Academy of Sciences.

[40]  Jean-Claude Martinou,et al.  SLP‐2 is required for stress‐induced mitochondrial hyperfusion , 2009, The EMBO journal.

[41]  M. Gustafsson,et al.  Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. , 2008, Biophysical journal.

[42]  A. M. van der Bliek,et al.  The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. , 2008, Molecular biology of the cell.

[43]  Julie A. Theriot,et al.  Mechanism of shape determination in motile cells , 2008, Nature.

[44]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[45]  A. Mogilner,et al.  Model of polarization and bistability of cell fragments. , 2007, Biophysical journal.

[46]  I. Boldogh,et al.  Mitochondria on the move. , 2007, Trends in cell biology.

[47]  P. Camilli,et al.  GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission , 2006, Nature.

[48]  J. McCaffery,et al.  Dnm1 forms spirals that are structurally tailored to fit mitochondria , 2005, The Journal of cell biology.

[49]  R. Cross,et al.  Mechanics of the kinesin step , 2005, Nature.

[50]  Yonathan Kozlovsky,et al.  Membrane fission: model for intermediate structures. , 2003, Biophysical journal.

[51]  T. Kirchhausen,et al.  Constriction and Dnm1p recruitment are distinct processes in mitochondrial fission. , 2003, Molecular biology of the cell.

[52]  I. Derényi,et al.  Formation and interaction of membrane tubes. , 2002, Physical review letters.

[53]  S. Zhang,et al.  Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides. , 2002, Physical review letters.

[54]  A. M. van der Bliek,et al.  Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. , 2001, Molecular biology of the cell.

[55]  J. Shaw,et al.  Dnm1p Gtpase-Mediated Mitochondrial Fission Is a Multi-Step Process Requiring the Novel Integral Membrane Component Fis1p , 2000, The Journal of cell biology.

[56]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[57]  Michael P. Sheetz,et al.  Cell Spreading and Lamellipodial Extension Rate Is Regulated by Membrane Tension , 2000, The Journal of cell biology.

[58]  A. M. van der Bliek,et al.  C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. , 1999, Molecular cell.

[59]  A. Murray,et al.  Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. , 1997, Molecular biology of the cell.

[60]  E. Evans,et al.  Hidden dynamics in rapid changes of bilayer shape , 1994 .

[61]  M. De Brabander,et al.  Interaction of oncodazole (R 17934), a new antitumoral drug, with rat brain tubulin. , 1976, Biochemical and biophysical research communications.

[62]  M. De Brabander,et al.  The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. , 1976, Cancer research.

[63]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[64]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[65]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .