On the Treatment of Exterior Domains for the Time-Harmonic Equations of Stellar Oscillations

In a recent article we started to analyze the time-harmonic equations of stellar oscillations. As a first step we considered bounded domains together with an essential boundary condition and established the wellposedness of the equation. In this article we consider the physical relevant case of the domain being R. We discuss the treatment of the exterior domain, and show how to couple the two parts to obtain a well-posedness result. Further, for the Cowling approximation (which neglects the Eulerian perturbation of gravity) we derive a scalar equation in the atmosphere, couple it to the vectorial interior equation, and prove the well-posedness of the new system. This coupled system has the big advantages that it simplifies the construction of approximating transparent boundary conditions and leads to significant less degrees of freedom for discretizations.

[1]  Anne-Sophie Bonnet-Ben Dhia,et al.  Perfectly Matched Layers for Time-Harmonic Acoustics in the Presence of a Uniform Flow , 2006, SIAM J. Numer. Anal..

[2]  Hiroyasu Ando,et al.  Nonradial Oscillations of Stars , 1989 .

[3]  Jean-François Mercier,et al.  Time-Harmonic Acoustic Scattering in a Complex Flow: A Full Coupling Between Acoustics and Hydrodynamics , 2012 .

[4]  P. Sturrock Structure of the Solar Chromosphere , 1964, Nature.

[5]  S. Marburg,et al.  An infinite element for the solution of Galbrun equation , 2013 .

[6]  Thorsten Hohage,et al.  On the Well-posedness of the Damped Time-harmonic Galbrun Equation and the Equations of Stellar Oscillations , 2020, SIAM J. Math. Anal..

[7]  H. Barucq,et al.  Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology , 2020, ESAIM: Mathematical Modelling and Numerical Analysis.

[8]  Martin Halla Convergence of Hardy Space Infinite Elements for Helmholtz Scattering and Resonance Problems , 2016, SIAM J. Numer. Anal..

[9]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[10]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[11]  S. M. Chitre,et al.  The Current State of Solar Modeling , 1996, Science.

[12]  J. Keller,et al.  Elastic, Electromagnetic, and Other Waves in a Random Medium , 1964 .

[13]  J. Ostriker,et al.  On the stability of differentially rotating bodies , 1967 .

[14]  G. Gabard,et al.  Aeroacoustic Noise Source Simulations based on Galbrun's Equation , 2004 .

[15]  Thorsten Hohage,et al.  Hardy Space Infinite Elements for Scattering and Resonance Problems , 2009, SIAM J. Numer. Anal..

[16]  M. B. Tahar,et al.  Perfectly Matched Layer for Galbrun's aeroacoustic equation in a cylindrical coordinates system with an axial and a swirling steady mean flow , 2016 .

[17]  Eugene H. Avrett,et al.  Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet sun , 1981 .

[18]  H. Galbrun Propagation d'une onde sonore dans l'atmosphère et théorie des zones de silence , 1931 .

[19]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[20]  Martin Halla,et al.  Analysis of radial complex scaling methods: scalar resonance problems , 2020, SIAM J. Numer. Anal..

[21]  Seungil Kim Cartesian PML approximation to resonances in open systems in R2 , 2014 .

[22]  Florian Faucher,et al.  Outgoing modal solutions for Galbrun's equation in helioseismology , 2021 .

[23]  Christoph Lehrenfeld,et al.  Learned infinite elements , 2021, SIAM J. Sci. Comput..