Communication: three-dimensional model for phonon confinement in small particles: quantitative bandshape analysis of size-dependent Raman spectra of nanodiamonds.

Raman spectroscopy of nano-scale materials is facing a challenge of developing a physically sound quantitative approach for the phonon confinement effect, which profoundly affects the phonon Raman band shapes of small particles. We have developed a new approach based on 3-dimensional phonon dispersion functions. It analyzes the Raman band shapes quantitatively in terms of the particle size distributions. To test the model, we have successfully obtained good fits of the observed phonon Raman spectra of diamond nanoparticles in the size range from 1 to 100 nm.

[1]  M. Proskurnin,et al.  Improving the dispersity of detonation nanodiamond: differential scanning calorimetry as a new method of controlling the aggregation state of nanodiamond powders. , 2013, Nanoscale.

[2]  M. Chaigneau,et al.  Laser heating versus phonon confinement effect in the Raman spectra of diamond nanoparticles , 2012, Journal of Nanoparticle Research.

[3]  A. Goga,et al.  Nanodiamond Therapeutic Delivery Agents Mediate Enhanced Chemoresistant Tumor Treatment , 2011, Science Translational Medicine.

[4]  Y. Chabal,et al.  Modified phonon confinement model for Raman spectroscopy of nanostructured materials , 2010 .

[5]  S. Irle,et al.  Convergence in the evolution of nanodiamond Raman spectra with particle size: a theoretical investigation. , 2010, ACS nano.

[6]  L. Kirste,et al.  Size-dependent reactivity of diamond nanoparticles. , 2010, ACS nano.

[7]  Yury Gogotsi,et al.  Phonon confinement effects in the Raman spectrum of nanodiamond , 2009 .

[8]  A. Anedda,et al.  Effective Linewidth in Raman Spectra of Titanium Dioxide Nanocrystals , 2009 .

[9]  Michael Sternberg,et al.  Crystallinity and surface electrostatics of diamond nanocrystals , 2007 .

[10]  M. Ozawa,et al.  Preparation and Behavior of Brownish, Clear Nanodiamond Colloids , 2007 .

[11]  M. Ozawa,et al.  Unusually tight aggregation in detonation nanodiamond: Identification and disintegration , 2005 .

[12]  E. Tronc,et al.  Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy , 2003 .

[13]  D. Strauch,et al.  Overbending of the longitudinal optical phonon branch in diamond as evidenced by inelastic neutron and x-ray scattering , 2002 .

[14]  D. S. Misra,et al.  Nature of confinement of phonons in nanocrystalline CVD diamond , 2001 .

[15]  A. Macrander,et al.  PHONON DISPERSION OF DIAMOND MEASURED BY INELASTIC X-RAY SCATTERING , 1998 .

[16]  F. Pollak,et al.  RAMAN SPECTROSCOPY AS A MORPHOLOGICAL PROBE FOR TIO2 AEROGELS , 1997 .

[17]  D. Strauch,et al.  A neutron-scattering study of the overbending of the [100] LO phonon mode in diamond , 1996 .

[18]  A. Ishitani,et al.  Raman scattering from diamond particles , 1993 .

[19]  Ager,et al.  Spatially resolved Raman studies of diamond films grown by chemical vapor deposition. , 1991, Physical review. B, Condensed matter.

[20]  L. Ley,et al.  The one phonon Raman spectrum in microcrystalline silicon , 1981 .

[21]  H. Bernstein,et al.  A Cell for Resonance Raman Excitation with Lasers in Liquids , 1971 .

[22]  Reuben Shuker,et al.  Raman-Scattering Selection-Rule Breaking and the Density of States in Amorphous Materials , 1970 .

[23]  J. Warren,et al.  Lattice Dynamics of Diamond , 1967 .

[24]  J. Warren,et al.  Lattice Vibrations in Diamond , 1964 .

[25]  Yury Gogotsi,et al.  The properties and applications of nanodiamonds. , 2011, Nature nanotechnology.