An ACO-Based Reactive Framework for Ant Colony Optimization: First Experiments on Constraint Satisfaction Problems

We introduce two reactive frameworks for dynamically adapting some parameters of an Ant Colony Optimization (ACO) algorithm. Both reactive frameworks use ACO to adapt parameters: pheromone trails are associated with parameter values; these pheromone trails represent the learnt desirability of using parameter values and are used to dynamically set parameters in a probabilistic way. The two frameworks differ in the granularity of parameter learning. We experimentally evaluate these two frameworks on an ACO algorithm for solving constraint satisfaction problems.

[1]  Christine Solnon,et al.  Ants can solve constraint satisfaction problems , 2002, IEEE Trans. Evol. Comput..

[2]  Marcus Randall Near Parameter Free Ant Colony Optimisation , 2004, ANTS Workshop.

[3]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[4]  Mauro Brunato,et al.  Reactive Search and Intelligent Optimization , 2008 .

[5]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[6]  Richard J. Wallace,et al.  Partial Constraint Satisfaction , 1989, IJCAI.

[7]  Christine Solnon,et al.  An Ant Colony Optimization Meta-Heuristic for Subset Selection Problems , 2006 .

[8]  Roberto Battiti,et al.  Reactive Local Search for the Maximum Clique Problem1 , 2001, Algorithmica.

[9]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[10]  Thomas Stützle,et al.  Ant Colony Optimization and Swarm Intelligence , 2008 .

[11]  Christine Solnon,et al.  Combining two pheromone structures for solving the car sequencing problem with Ant Colony Optimization , 2008, Eur. J. Oper. Res..

[12]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[13]  E. D. Taillard,et al.  Ant Systems , 1999 .

[14]  Christine Solnon,et al.  A study of ACO capabilities for solving the maximum clique problem , 2006, J. Heuristics.

[15]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..