Delay differential equations for mode-locked semiconductor lasers.
暂无分享,去创建一个
[1] E. L. Portnoi,et al. Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications , 2000 .
[2] Thomas Erneux. Q-switching bifurcation in a laser with a saturable absorber , 1988 .
[3] G. Samaey,et al. DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations , 2001 .
[4] Kam Y. Lau,et al. Parameter ranges for ultrahigh frequency mode locking of semiconductor lasers , 1991 .
[5] G. New. Pulse evolution in mode-locked quasi-continuous lasers , 1974 .
[6] Hermann A. Haus,et al. Shape of passively mode-locked laser pulses , 1975 .
[7] Hermann A. Haus,et al. Modelocking of Semiconductor Laser Diodes , 1981 .
[8] H. Haus. Mode-locking of lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.
[9] A theoretical model of synchronization of a mode-locked semiconductor laser with an external pulse stream , 1995 .
[10] H. Haus. Theory of mode locking with a slow saturable absorber , 1975 .
[11] Peter Vasil'ev,et al. Ultrafast Diode Lasers: Fundamentals and Applications , 1995 .
[12] P. Platzman,et al. An optimized π/2 distributed feedback laser , 1985, IEEE Journal of Quantum Electronics.
[13] Rüdiger Paschotta,et al. Passive mode locking with slow saturable absorbers , 2001 .
[14] P. V. Sytin. Ultrafast diode lasers : fundamentals and applications , 1995 .
[15] Hermann A. Haus,et al. Stability of lasers mode locked by two saturable absorbers , 1993 .