Total Dose Effects and Bias Instabilities of (NH4)2S Passivated Ge MOS Capacitors With HfxZr1–xOy Thin Films

The effects of biased irradiation on Ge MOS capacitors with Hf<sub><italic>x</italic></sub>Zr<sub>1–<italic>x</italic></sub>O<sub><italic>y</italic></sub> (0.43 < <italic>x</italic> < 1) gate dielectrics have been investigated. These devices were irradiated by a 662-KeV Cs<inline-formula> <tex-math notation="LaTeX">$^{137} \gamma $ </tex-math></inline-formula>-ray radiation source with 0.5 or –0.5 V gate bias. Prior to irradiation exposure, leakage behavior and bias-instability of Hf<sub><italic>x</italic></sub>Zr<sub>1–<italic>x</italic></sub>O<sub><italic>y</italic></sub> films were also examined. Gate leakage current density increases with the increasing of Zr composition in gate oxide. In addition, Zr-containing dielectrics under positive bias (PB) exhibited more oxide negative trapped charges than that of HfO<sub>2</sub>, which suggested that the oxygen-vacancy concentration in Hf<sub><italic>x</italic></sub>Zr<sub>1–<italic>x</italic></sub>O<sub><italic>y</italic></sub> was increased by the addition of Zr. Larger flat-band voltage shifts (<inline-formula> <tex-math notation="LaTeX">$\Delta V_{\mathrm {FB}})$ </tex-math></inline-formula> were extracted under positive biased irradiation than the bias only results. The results indicate that radiation-induced interface traps (<inline-formula> <tex-math notation="LaTeX">$\Delta N_{\mathrm {it}})$ </tex-math></inline-formula> are the dominant factor for <inline-formula> <tex-math notation="LaTeX">$\Delta V_{\mathrm {FB}}$ </tex-math></inline-formula> in HfO<sub>2</sub> thin films, whereas the radiation response for Zr-containing dielectrics under PB was mainly due to oxide traps. Under negative biased irradiation, <inline-formula> <tex-math notation="LaTeX">$\Delta V_{\mathrm {FB}}$ </tex-math></inline-formula> was attributed to the combined effect of the net oxide trapped charges and the passivation of Ge dangling bonds at the Ge/high-k interface. Additionally, both bias-induced and radiation-induced charge trapping have a crucial effect on radiation response of Hf<sub><italic>x</italic></sub>Zr<sub>1–<italic>x</italic></sub>O<sub><italic>y</italic></sub> at each dose level. Hf<sub><italic>x</italic></sub>Zr<sub>1–<italic>x</italic></sub>O<sub><italic>y</italic></sub> is identified as a promising gate dielectric for advanced complementary metal–oxide–semiconductor technologies.

[1]  Qi Guo,et al.  Impact of Bias Conditions on Total Ionizing Dose Effects of $^{60}{\hbox{Co}}\gamma $ in SiGe HBT , 2016, IEEE Transactions on Nuclear Science.

[2]  I. Mitrovic,et al.  Real-time and on-site γ-ray radiation response testing system for semiconductor devices and its applications , 2016 .

[3]  V. Dhanak,et al.  Hafnia and alumina on sulphur passivated germanium , 2015 .

[4]  D. Misra,et al.  Impact of cyclic plasma treatment on oxygen vacancy defects in TiN/HfZrO/SiON/Si gate stacks , 2015 .

[5]  En Xia Zhang,et al.  Bias Dependence of Total Ionizing Dose Effects in SiGe-MOS FinFETs , 2014, IEEE Transactions on Nuclear Science.

[6]  Nagarajan Raghavan,et al.  High-κ dielectric breakdown in nanoscale logic devices - Scientific insight and technology impact , 2014, Microelectron. Reliab..

[7]  John Robertson,et al.  Band offsets, Schottky barrier heights, and their effects on electronic devices , 2013 .

[8]  O. Gilard,et al.  Total Dose Effects: A New Approach to Assess the Impact of Radiation on Device Reliability , 2013, IEEE Transactions on Nuclear Science.

[9]  Xinhong Cheng,et al.  Total-Dose Radiation Response of HfLaO Films Prepared by Plasma Enhanced Atomic Layer Deposition , 2013, IEEE Transactions on Nuclear Science.

[10]  N. Miyata Study of Direct-Contact HfO2/Si Interfaces , 2012, Materials.

[11]  N. Taoka,et al.  High-Mobility Ge pMOSFET With 1-nm EOT $\hbox{Al}_{2} \hbox{O}_{3}/\hbox{GeO}_{x}/\hbox{Ge}$ Gate Stack Fabricated by Plasma Post Oxidation , 2012, IEEE Transactions on Electron Devices.

[12]  M. Caymax,et al.  Atomic layer deposition of Al2O3 on S-passivated Ge , 2011 .

[13]  P. Kirsch,et al.  Increasing permittivity in HfZrO thin films by surface manipulation , 2009 .

[14]  P. Lai,et al.  A study on fluorine incorporation in Ge p-MOS capacitors with HfTiON dielectric , 2009 .

[15]  Piero Pianetta,et al.  Hafnium oxide/germanium oxynitride gate stacks on germanium: Capacitance scaling and interface state density , 2009 .

[16]  E. Vogel,et al.  Half-cycle atomic layer deposition reaction studies of Al2O3 on (NH4)2S passivated GaAs(100) surfaces , 2008 .

[17]  L. Mao Investigating the effects of the interface defects on the gate leakage current in MOSFETs , 2008 .

[18]  M. Heyns,et al.  Stress-Induced Positive Charge in Hf-Based Gate Dielectrics: Impact on Device Performance and a Framework for the Defect , 2008, IEEE Transactions on Electron Devices.

[19]  S. Samavedam,et al.  Hafnium zirconate gate dielectric for advanced gate stack applications , 2007 .

[20]  L. Tsetseris,et al.  Effects of Switched-bias Annealing on Charge Trapping in HfO$_{2}$ Gate Dielectrics , 2006, IEEE Transactions on Nuclear Science.

[21]  Guido Groeseneken,et al.  Determination of capture cross sections for as-grown electron traps in HfO2∕HfSiO stacks , 2006 .

[22]  J. Robertson High dielectric constant gate oxides for metal oxide Si transistors , 2006 .

[23]  Young Hee Kim,et al.  Bias-temperature instabilities of polysilicon gate HfO/sub 2/ MOSFETs , 2003 .

[24]  Kenneth F. Galloway,et al.  A model of radiation effects in nitride–oxide films for power MOSFET applications , 2003 .

[25]  Ronald D. Schrimpf,et al.  Total-dose radiation response of hafnium-silicate capacitors , 2002 .

[26]  Gabriella Ghidini,et al.  A model of radiation induced leakage current (RILC) in ultra-thin gate oxides , 1999 .

[27]  Alessandro Paccagnella,et al.  Radiation induced leakage current and stress induced leakage current in ultra-thin gate oxides , 1998 .

[28]  Alessandro Paccagnella,et al.  Ionizing radiation induced leakage current on ultra-thin gate oxides , 1997 .

[29]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[30]  E. H. Nicollian,et al.  The si-sio, interface – electrical properties as determined by the metal-insulator-silicon conductance technique , 1967 .

[31]  I. Mitrovic,et al.  Total Ionizing Dose Response of Hafnium-Oxide Based MOS Devices to Low-Dose-Rate Gamma Ray Radiation Observed by Pulse CV and On-Site Measurements , 2017, IEEE Transactions on Nuclear Science.

[32]  Li-Jung Liu,et al.  Improved Electrical Characteristics of Ge pMOSFETs With ZrO2/HfO2 Stack Gate Dielectric , 2016, IEEE Electron Device Letters.

[33]  W. Hung,et al.  A first principles study of H2S adsorption and decomposition on a Ge(100) surface , 2015 .

[34]  peixiong zhao,et al.  Total Dose Response of Ge MOS Capacitors With HfO /Dy O Gate Stacks , 2007 .

[35]  G. D. Wilka,et al.  APPLIED PHYSICS REVIEW High- k gate dielectrics: Current status and materials properties considerations , 2001 .