Singular Perturbation and the Energy of Folds

$\int \epsilon^{-1} (1-|\nabla u|^2)^2 + \epsilon |\nabla \nabla u|^2$ in two space dimensions. We introduce a new scheme for proving lower bounds and show the bounds are asymptotically sharp for certain domains and boundary conditions. Our results support the conjecture, due to Aviles and Giga, that folds are one-dimensional, i.e., \nabla u varies mainly in the direction transverse to the fold. We also consider related problems obtained when (1-|\nabla u|2)2 is replaced by (1-δ2 ux2 - uy2)2 or (1-|\nabla u|2)2γ .

[1]  Robert V. Kohn,et al.  Local minimisers and singular perturbations , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  Alan C. Newell,et al.  Convection patterns in large aspect ratio systems , 1984 .

[3]  S. Baldo Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids , 1990 .

[4]  Boundary layer analysis of the ridge singularity in a thin plate. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  L. Tartar,et al.  The gradient theory of phase transitions for systems with two potential wells , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  A. Hubert,et al.  Magnetic Domains: The Analysis of Magnetic Microstructures , 2014 .

[7]  NONCONVEX VARIATIONAL PROBLEMS WITH GENERAL SINGULAR PERTURBATIONS , 1988 .

[8]  G. Bouchitté,et al.  Singular perturbations of variational problems arising from a two-phase transition model , 1990 .

[9]  J. Sethna,et al.  Spheric domains in smectic liquid crystals , 1982 .

[10]  Yoshikazu Giga,et al.  The distance function and defect energy , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  Alan C. Newell,et al.  The Geometry of the Phase Diffusion Equation , 2000, J. Nonlinear Sci..

[12]  M. Ortiz,et al.  Delamination of Compressed Thin Films , 1997 .

[13]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[14]  O. Parodi,et al.  Covariant elasticity for smectics A , 1975 .

[15]  M. Ortiz,et al.  The morphology and folding patterns of buckling-driven thin-film blisters , 1994 .

[16]  F. Otto,et al.  A compactness result in the gradient theory of phase transitions , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  H. A. M. van den Berg,et al.  Order in the domain structure in soft-magnetic thin-film elements: a review , 1989 .

[18]  P. Sternberg The effect of a singular perturbation on nonconvex variational problems , 1988 .

[19]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[20]  A. Hubert,et al.  Micromagnetic analysis of thin‐film elements (invited) , 1991 .

[21]  I. Fonseca,et al.  Relaxation of multiple integrals in the space BV(Ω, RP) , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[22]  Yoshikazu Giga,et al.  A mathematical problem related to the physical theory of liquid crystal configurations , 1987 .

[23]  Alan C. Newell,et al.  Defects are weak and self-dual solutions of the Cross-Newell phase diffusion equation for natural patterns , 1996 .

[24]  T. Witten,et al.  Properties of ridges in elastic membranes , 1996, cond-mat/9609068.

[25]  Yoshikazu Giga,et al.  On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[26]  Ana Cristina Barroso,et al.  Anisotropic singular perturbations—the vectorial case , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.