Beyond BOTOX: advantages and limitations of individual botulinum neurotoxins

[1]  E. Callaway A molecular and genetic arsenal for systems neuroscience , 2005, Trends in Neurosciences.

[2]  L. Maffei,et al.  Antiepileptic Effects of Botulinum Neurotoxin E , 2005, The Journal of Neuroscience.

[3]  D. Dinsdale,et al.  Botulinum neurotoxin C initiates two different programs for neurite degeneration and neuronal apoptosis , 2005, The Journal of cell biology.

[4]  T. Bliss,et al.  Long-term potentiation and cognitive drug discovery. , 2005, Current opinion in investigational drugs.

[5]  Benjamin L Walter,et al.  Surgical treatment for Parkinson's disease , 2004, The Lancet Neurology.

[6]  G. Ahnert-Hilger,et al.  Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates , 2004, Journal of neurochemistry.

[7]  H. Lüders,et al.  Frontal lobe epilepsy. , 2004, Epileptic disorders : international epilepsy journal with videotape.

[8]  B. Davletov,et al.  A molecular basis underlying differences in the toxicity of botulinum serotypes A and E , 2004, EMBO reports.

[9]  H. Zeringue,et al.  Post-transcriptional gene silencing in neurons , 2004, Current Opinion in Neurobiology.

[10]  J. Sobel,et al.  Foodborne Botulism in the United States, 1990–2000 , 2004, Emerging infectious diseases.

[11]  H. Bigalke,et al.  Synaptotagmins I and II Act as Nerve Cell Receptors for Botulinum Neurotoxin G* , 2004, Journal of Biological Chemistry.

[12]  T. Südhof The synaptic vesicle cycle , 2004 .

[13]  J. Jankovic,et al.  Botulinum toxin in clinical practice , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[14]  M. Cherington Botulism: update and review. , 2004, Seminars in neurology.

[15]  C. Montecucco,et al.  Central injection of botulinum neurotoxins: behavioural effects in mice , 2004, Behavioural pharmacology.

[16]  A. B. Scott Development of botulinum toxin therapy. , 2004, Dermatologic clinics.

[17]  Helen Ho,et al.  Plasma membrane localization signals in the light chain of botulinum neurotoxin. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Roberto Eleopra,et al.  Different types of botulinum toxin in humans , 2004, Movement disorders : official journal of the Movement Disorder Society.

[19]  Frank J Erbguth,et al.  Historical notes on botulism, Clostridium botulinum, botulinum toxin, and the idea of the therapeutic use of the toxin , 2004, Movement disorders : official journal of the Movement Disorder Society.

[20]  C. Frassoni,et al.  SNAP-25 Modulation of Calcium Dynamics Underlies Differences in GABAergic and Glutamatergic Responsiveness to Depolarization , 2004, Neuron.

[21]  L. Simpson,et al.  Identification of the major steps in botulinum toxin action. , 2004, Annual review of pharmacology and toxicology.

[22]  Colin Rickman,et al.  High Affinity Interaction of Syntaxin and SNAP-25 on the Plasma Membrane Is Abolished by Botulinum Toxin E* , 2004, Journal of Biological Chemistry.

[23]  A. Dickenson,et al.  Retargeted clostridial endopeptidases: Inhibition of nociceptive neurotransmitter release in vitro, and antinociceptive activity in in vivo models of pain , 2002, Movement disorders : official journal of the Movement Disorder Society.

[24]  H. Bellen,et al.  Synaptotagmin I, a Ca2+ sensor for neurotransmitter release , 2003, Trends in Neurosciences.

[25]  O. Dolly Synaptic Transmission: Inhibition of Neurotransmitter Release by Botulinum Toxins , 2003, Headache.

[26]  B. Davletov,et al.  Getting muscles moving again after botulinum toxin: novel therapeutic challenges. , 2003, Trends in molecular medicine.

[27]  J. Dolly,et al.  Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation , 2003, Molecular and Cellular Neuroscience.

[28]  Leonard A. Smith,et al.  Evaluation of the Therapeutic Usefulness of Botulinum Neurotoxin B, C1, E, and F Compared with the Long Lasting Type A , 2003, The Journal of Biological Chemistry.

[29]  M. Montal,et al.  Translocation of botulinum neurotoxin light chain protease through the heavy chain channel , 2003, Nature Structural Biology.

[30]  A. Dickenson,et al.  Inhibition of Release of Neurotransmitters from Rat Dorsal Root Ganglia by a Novel Conjugate of a Clostridium botulinumToxin A Endopeptidase Fragment and Erythrina cristagalliLectin* , 2002, The Journal of Biological Chemistry.

[31]  C. Schengrund,et al.  Botulinum Neurotoxin A Activity Is Dependent upon the Presence of Specific Gangliosides in Neuroblastoma Cells Expressing Synaptotagmin I* , 2002, The Journal of Biological Chemistry.

[32]  C. Lewis Botox cosmetic: a look at looking good. , 2002, FDA consumer.

[33]  Eric A. Johnson,et al.  Development of a delivery vehicle for intracellular transport of botulinum neurotoxin antagonists 1 , 2002, FEBS letters.

[34]  H. Keshishian,et al.  Molecular genetic approaches to the targeted suppression of neuronal activity , 2001, Current Biology.

[35]  K. Aoki,et al.  Botulinum toxin type A and other botulinum toxin serotypes: a comparative review of biochemical and pharmacological actions , 2001, European journal of neurology.

[36]  E. Neale,et al.  The Role of the Synaptic Protein SNAP-25 in the Potency of Botulinum Neurotoxin Type A* , 2001, The Journal of Biological Chemistry.

[37]  M. Adler,et al.  Persistence of botulinum neurotoxin A demonstrated by sequential administration of serotypes A and E in rat EDL muscle. , 2001, Toxicon : official journal of the International Society on Toxinology.

[38]  E. Matveeva,et al.  N-ethylmaleimide sensitive factor (NSF) structure and function. , 2001, International review of cytology.

[39]  J. Cabaniols,et al.  Targeting of SNAP-25 to Membranes Is Mediated by Its Association with the Target SNARE Syntaxin* , 2000, The Journal of Biological Chemistry.

[40]  G. Schiavo,et al.  Neurotoxins affecting neuroexocytosis. , 2000, Physiological reviews.

[41]  M. Veit Palmitoylation of the 25-kDa synaptosomal protein (SNAP-25) in vitro occurs in the absence of an enzyme, but is stimulated by binding to syntaxin. , 1999, The Biochemical journal.

[42]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[43]  G. Oyler,et al.  Persistence of botulinum neurotoxin action in cultured spinal cord cells 1,2 , 1999, FEBS letters.

[44]  E. Johnson,et al.  Clostridial toxins as therapeutic agents: benefits of nature's most toxic proteins. , 1999, Annual review of microbiology.

[45]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[46]  A. B. Maksymowych,et al.  Binding and Transcytosis of Botulinum Neurotoxin by Polarized Human Colon Carcinoma Cells* , 1998, The Journal of Biological Chemistry.

[47]  L. Williamson,et al.  Syntaxin and 25‐kDa synaptosomal‐associated protein: Differential effects of botulinum neurotoxins C1 and A on neuronal survival , 1998, Journal of neuroscience research.

[48]  B. Gähwiler,et al.  Ca2+ or Sr2+ Partially Rescues Synaptic Transmission in Hippocampal Cultures Treated with Botulinum Toxin A and C, But Not Tetanus Toxin , 1997, The Journal of Neuroscience.

[49]  L. Gomella,et al.  In vitro characterization of botulinum toxin types A, C and D action on human tissues: combined electrophysiologic, pharmacologic and molecular biologic approaches. , 1997, The Journal of pharmacology and experimental therapeutics.

[50]  A. Brünger,et al.  A Structural Change Occurs upon Binding of Syntaxin to SNAP-25* , 1997, The Journal of Biological Chemistry.

[51]  J. Brown,et al.  Clostridial Neurotoxins and Substrate Proteolysis in Intact Neurons , 1996, The Journal of Biological Chemistry.

[52]  J. Dolly,et al.  Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. , 1996, Biochemistry.

[53]  Kazuki Sato,et al.  The high‐affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a , 1996, FEBS letters.

[54]  R. Jahn,et al.  Clostridial neurotoxins: new tools for dissecting exocytosis. , 1994, Trends in cell biology.

[55]  H. Wellhöner Tetanus and botulinum neurotoxins , 1994 .

[56]  F. Benfenati,et al.  Botulinum neurotoxins serotypes A and E cleave SNAP‐25 at distinct COOH‐terminal peptide bonds , 1993, FEBS letters.

[57]  Thomas C. Südhof,et al.  Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25 , 1993, Nature.

[58]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[59]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[60]  J. Polli,et al.  Developmental expression of the 25-kDa synaptosomal-associated protein (SNAP-25) in rat brain. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[61]  H. Kurazono,et al.  The complete sequence of botulinum neurotoxin type A and comparison with other clostridial neurotoxins. , 1990, The Journal of biological chemistry.

[62]  L. Tauc,et al.  Inhibition of neurotransmitter release by botulinum neurotoxins and tetanus toxin at Aplysia synapses: role of the constituent chains. , 1990, Journal de physiologie.

[63]  A. de Paiva,et al.  Light chain of botulinum neurotoxin is active in mammalian motor nerve terminals when delivered via liposomes , 1990, FEBS letters.

[64]  F E Bloom,et al.  The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations , 1989, The Journal of cell biology.

[65]  T. Südhof,et al.  A synaptic vesicle membrane protein is conserved from mammals to Drosophila , 1989, Neuron.

[66]  J. Dolly,et al.  Characterization of the Inhibitory Action of Botulinum Neurotoxin Type A on the Release of Several Transmitters from Rat Cerebrocortical Synaptosomes , 1988, Journal of neurochemistry.

[67]  R. Scheller,et al.  VAMP-1: a synaptic vesicle-associated integral membrane protein. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Black,et al.  Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves , 1986, The Journal of cell biology.

[69]  G. Bergey,et al.  Botulinum a neurotoxin inhibits non-cholinergic synaptic transmission in mouse spinal cord neurons in culture , 1985, Brain Research.

[70]  R. Dirnhofer,et al.  Isolation of Clostridium botulinum type G and identification of type G botulinal toxin in humans: report of five sudden unexpected deaths. , 1981, The Journal of infectious diseases.