A matrix-free implicit unstructured multigrid finite volume method for simulating structural dynamics and fluid-structure interaction

A new three-dimensional (3D) matrix-free implicit unstructured multigrid finite volume (FV) solver for structural dynamics is presented in this paper. The solver is first validated using classical 2D and 3D cantilever problems. It is shown that very accurate predictions of the fundamental natural frequencies of the problems can be obtained by the solver with fast convergence rates. This method has been integrated into our existing FV compressible solver [X. Lv, Y. Zhao, et al., An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3d unsteady compressible flows with moving objects, Journal of Computational Physics 215(2) (2006) 661-690] based on the immersed membrane method (IMM) [X. Lv, Y. Zhao, et al., as mentioned above]. Results for the interaction between the fluid and an immersed fixed-free cantilever are also presented to demonstrate the potential of this integrated fluid-structure interaction approach.

[1]  V. Selmin,et al.  The node-centred finite volume approach: bridge between finite differences and finite elements , 1993 .

[2]  I. Demirdžić,et al.  Finite volume method for thermo-elasto-plastic stress analysis , 1993 .

[3]  O. C. Zienkiewicz,et al.  Origins, milestones and directions of the finite element method— A personal view , 1995 .

[4]  Jesper Henri Hattel,et al.  A control volume-based finite difference method for solving the equilibrium equations in terms of displacements , 1995 .

[5]  Charles Hirsch,et al.  Numerical computation of internal & external flows: fundamentals of numerical discretization , 1988 .

[6]  J. Z. Zhu,et al.  The finite element method , 1977 .

[7]  E. Oñate,et al.  Finite volumes and finite elements: Two ‘good friends’ , 1994 .

[8]  R. T. Fenner Engineering elasticity : application of numerical and analytical techniques , 1986 .

[9]  Miguel Cervera,et al.  A finite volume format for structural mechanics , 1994 .

[10]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[11]  M. Wheel,et al.  A geometrically versatile finite volume formulation for plane elastostatic stress analysis , 1996 .

[12]  Chris Bailey,et al.  A control volume procedure for solving the elastic stress-strain equations on an unstructured mesh , 1991 .

[13]  Marcus Wheel,et al.  A mixed finite volume formulation for determining the small strain deformation of incompressible materials , 1999 .

[14]  Chris Bailey,et al.  A finite volume procedure to solve elastic solid mechanics problems in three dimensions on an unstructured mesh , 1995 .

[15]  Yong Zhao,et al.  A finite volume unstructured multigrid method for efficient computation of unsteady incompressible viscous flows , 2004 .

[16]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[17]  D. Owen,et al.  Finite elements in plasticity : theory and practice , 1980 .

[18]  Yong Zhao,et al.  An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3D unsteady compressible flows with moving objects , 2006, J. Comput. Phys..

[19]  Hrvoje Jasak,et al.  Application of the finite volume method and unstructured meshes to linear elasticity , 2000 .

[20]  B. R. Baliga,et al.  A NEW FINITE-ELEMENT FORMULATION FOR CONVECTION-DIFFUSION PROBLEMS , 1980 .

[21]  Robert H. Scanlan,et al.  Flow-Induced Vibration , 1977 .

[22]  O. C. Zienkiewicz,et al.  Basic formulation and linear problems , 1989 .

[23]  C. Bailey,et al.  Dynamic solid mechanics using finite volume methods , 2003 .

[24]  S. Muzaferija,et al.  Finite volume method for stress analysis in complex domains , 1994 .

[25]  Mark Cross,et al.  A finite volume unstructured mesh approach to dynamic fluid–structure interaction: an assessment of the challenge of predicting the onset of flutter , 2004 .

[26]  J. Donéa,et al.  Advanced structural dynamics , 1980 .