Structure–function studies of the RNA polymerase II elongation complex

X-ray crystallographic and complementary functional studies have contributed significantly to the current understanding of gene transcription. Here, recent structure–function studies on various aspects of the elongation phase of transcription are summarized.

[1]  J. Egly,et al.  Fate of RNA Polymerase II Stalled at a Cisplatin Lesion* , 2004, Journal of Biological Chemistry.

[2]  P. Cramer,et al.  Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. , 2004, Molecular cell.

[3]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[4]  C. Job,et al.  Spectrum of DNA--platinum adduct recognition by prokaryotic and eukaryotic DNA-dependent RNA polymerases. , 1993, Biochemistry.

[5]  G. Jensen,et al.  Electron Crystal Structure of an RNA Polymerase II Transcription Elongation Complex , 1999, Cell.

[6]  C. Job,et al.  Transcription by eucaryotic and procaryotic RNA polymerases of DNA modified at a d(GG) or a d(AG) site by the antitumor drug cis-diamminedichloroplatinum(II). , 1991, Biochemistry.

[7]  D. Bushnell,et al.  Structural Basis of Transcription Nucleotide Selection by Rotation in the RNA Polymerase II Active Center , 2004, Cell.

[8]  A. Sancar DNA excision repair. , 1996, Annual review of biochemistry.

[9]  H Toyokawa,et al.  The PILATUS 1M detector. , 2006, Journal of synchrotron radiation.

[10]  JohnB . Taylor,et al.  New structural and mechanistic insight into the A-rule and the instructional and non-instructional behavior of DNA photoproducts and other lesions. , 2002, Mutation research.

[11]  T. Steitz,et al.  Structural biology: A mechanism for all polymerases , 1998, Nature.

[12]  S. Lippard,et al.  RNA Polymerase II Blockage by Cisplatin-damaged DNA , 2006, Journal of Biological Chemistry.

[13]  Tahir H. Tahirov,et al.  Structural basis for transcription elongation by bacterial RNA polymerase , 2007, Nature.

[14]  D. Reinberg,et al.  RNA polymerase II stalled at a thymine dimer: footprint and effect on excision repair. , 1997, Nucleic acids research.

[15]  L. Prakash,et al.  Nucleotide excision repair in yeast. , 2000, Mutation research.

[16]  M. Saraste,et al.  FEBS Lett , 2000 .

[17]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[18]  P. Cramer,et al.  Architecture of the RNA Polymerase II-TFIIS Complex and Implications for mRNA Cleavage , 2003, Cell.

[19]  P. Hanawalt,et al.  Behavior of T7 RNA Polymerase and Mammalian RNA Polymerase II at Site-specific Cisplatin Adducts in the Template DNA* , 2003, Journal of Biological Chemistry.

[20]  P. Cramer,et al.  Structure of eukaryotic RNA polymerases. , 2008, Annual review of biophysics.

[21]  J. Hoeijmakers,et al.  Divide and conquer: nucleotide excision repair battles cancer and ageing. , 2003, Current opinion in cell biology.

[22]  P. Doetsch,et al.  RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? , 2006, Chemical reviews.

[23]  Craig D. Kaplan,et al.  The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. , 2008, Molecular cell.

[24]  H. Handa,et al.  Blockage of RNA polymerase II at a cyclobutane pyrimidine dimer and 6-4 photoproduct. , 2004, Biochemical and biophysical research communications.

[25]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[26]  Craig D. Kaplan,et al.  Structural Basis of Transcription: Role of the Trigger Loop in Substrate Specificity and Catalysis , 2006, Cell.

[27]  R. Woodgate,et al.  Replication of a cis–syn thymine dimer at atomic resolution , 2003, Nature.

[28]  Grant J. Jensen,et al.  Yeast RNA Polymerase II at 5 Å Resolution , 1999, Cell.

[29]  Arkady Mustaev,et al.  Unified two‐metal mechanism of RNA synthesis and degradation by RNA polymerase , 2003, The EMBO journal.

[30]  P. Cramer,et al.  Molecular basis of RNA-dependent RNA polymerase II activity , 2007, Nature.

[31]  A. Sancar,et al.  Model for XPC-independent Transcription-coupled Repair of Pyrimidine Dimers in Humans* , 1997, The Journal of Biological Chemistry.

[32]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[33]  M. Kashlev,et al.  The 8-Nucleotide-long RNA:DNA Hybrid Is a Primary Stability Determinant of the RNA Polymerase II Elongation Complex* , 2000, The Journal of Biological Chemistry.

[34]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[35]  P. Cramer,et al.  DNA photodamage recognition by RNA polymerase II , 2007, FEBS letters.

[36]  P. Cramer,et al.  CPD Damage Recognition by Transcribing RNA Polymerase II , 2007, Science.

[37]  R. Conaway,et al.  RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors , 2006, The EMBO journal.

[38]  Anton Meinhart,et al.  Structures of Complete RNA Polymerase II and Its Subcomplex, Rpb4/7* , 2005, Journal of Biological Chemistry.

[39]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[40]  D. Bushnell,et al.  Structural Basis of Transcription: Separation of RNA from DNA by RNA Polymerase II , 2004, Science.