Probing the interaction of single nanocrystals with inorganic capping ligands: time-resolved fluorescence from CdSe-CdS quantum dots capped with chalcogenidometalates.

Fluorescence intermittency and excited-state decay measurements are carried out on single CdSe-CdS core-shell quantum dots (QD) stabilized with chalcogenidometalates (ChaMs, In(2)Se(4)(2-), or Sn(2)S(6)(4-))(-). The results are used to probe the nature and distribution of charge trapping sites in the QD local environment. A comparison is made between capping by a neutral organic ligand (oleylamine) and a small inorganic ligand with high charge density (ChaMs). Overall, shorter on-state durations and longer off-state durations are observed for the ChaMs. These results indicate an increased density of charge trapping sites and increased stabilization of surface-trapped charges. By varying the thickness of the CdS shell, we identified hole trapping by the ligand as the dominant charging mechanism in ChaM-capped QDs. Faster excited-state decay rates are measured for the ChaM-capped QDs, highlighting the role of strongly stabilized trapped charges in this system. Using cyclic voltammetry measurements of the ChaMs, an energy level diagram is constructed relating the ChaMs and CdSe-CdS-QDs that explains their superior performance as active layers in photodetectors.

[1]  D. Chung,et al.  Low voltage, hysteresis free, and high mobility transistors from all-inorganic colloidal nanocrystals. , 2012, Nano letters.

[2]  S. Leone,et al.  CdSe/ZnS quantum dot intermittency in N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine (TPD) , 2012 .

[3]  A. Malko,et al.  Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals. , 2011, Nano letters.

[4]  C. Galland,et al.  Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots , 2011, Nature.

[5]  Lin-Wang Wang,et al.  Charge Transport in a Quantum Dot Supercrystal , 2011 .

[6]  X. Cao,et al.  Optical characterization of CdSe quantum dots with metal chalcogenide ligands in solutions and solids , 2011 .

[7]  S. Leone,et al.  Direct measurement of off-state trapping rate fluctuations in single quantum dot fluorescence. , 2011, Nano letters.

[8]  Marco Califano,et al.  Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. , 2011, ACS nano.

[9]  Dmitri V Talapin,et al.  Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands. , 2011, Journal of the American Chemical Society.

[10]  M. Kovalenko,et al.  Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. , 2011, Nature nanotechnology.

[11]  H. Abe,et al.  Microwave frequency effect in the formation of Au nanocolloids in polar and non-polar solvents. , 2011, Nanoscale.

[12]  S. Leone,et al.  Evidence for Multiple Trapping Mechanisms in Single CdSe/ZnS Quantum Dots from Fluorescence Intermittency Measurements over a Wide Range of Excitation Intensities , 2011 .

[13]  J. M. Kikkawa,et al.  A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. , 2011, Journal of the American Chemical Society.

[14]  P. Goodwin,et al.  Effect of shell thickness and composition on blinking suppression and the blinking mechanism in ‘giant’ CdSe/CdS nanocrystal quantum dots , 2010, Journal of biophotonics.

[15]  Sung Jun Lim,et al.  Shell and ligand-dependent blinking of CdSe-based core/shell nanocrystals. , 2010, Physical chemistry chemical physics : PCCP.

[16]  M. Kovalenko,et al.  Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. , 2010, Journal of the American Chemical Society.

[17]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[18]  A. Malko,et al.  Highly emissive multiexcitons in steady-state photoluminescence of individual "giant" CdSe/CdS Core/Shell nanocrystals. , 2010, Nano letters.

[19]  G. Scholes,et al.  On the use of time-resolved photoluminescence as a probe of nanocrystal photoexcitation dynamics , 2010 .

[20]  Yanpeng Zhang,et al.  Controlling blinking in multilayered quantum dots , 2010 .

[21]  A. P. Alivisatos,et al.  Modular inorganic nanocomposites by conversion of nanocrystal superlattices. , 2010, Angewandte Chemie.

[22]  M. Bawendi,et al.  Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking. , 2010, Physical review letters.

[23]  M. Kovalenko,et al.  Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , 2009, Science.

[24]  Sung Jun Lim,et al.  Ligand-dependent blinking of zinc-blende CdSe/ZnS core/shell nanocrystals. , 2009, Physical chemistry chemical physics : PCCP.

[25]  B. Dubertret,et al.  Bright and grey states in CdSe-CdS nanocrystals exhibiting strongly reduced blinking. , 2009, Physical review letters.

[26]  B. Dubertret,et al.  Towards non-blinking colloidal quantum dots. , 2008, Nature materials.

[27]  Peter B. Yim,et al.  Probing the dynamic fluorescence properties of single water-soluble quantum dots , 2008 .

[28]  J. Vela,et al.  "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. , 2008, Journal of the American Chemical Society.

[29]  G. Armatas,et al.  Porous Semiconducting Gels and Aerogels from Chalcogenide Clusters , 2007, Science.

[30]  F. Cichos,et al.  Correlation between photoluminescence intermittency of CdSe quantum dots and self-trapped states in dielectric media , 2005 .

[31]  A. Afzali,et al.  High-mobility ultrathin semiconducting films prepared by spin coating , 2004, Nature.

[32]  David J. Nesbitt,et al.  ``On''/``off'' fluorescence intermittency of single semiconductor quantum dots , 2001 .

[33]  E. Lifshitz,et al.  Optically Detected Magnetic Resonance Studies of the Surface/Interface Properties of II−VI Semiconductor Quantum Dots , 2000 .

[34]  M. Rosen,et al.  The Electronic Structure of Semiconductor Nanocrystals1 , 2000 .

[35]  D. Proserpio,et al.  Low temperature route towards new materials: solvothermal synthesis of metal chalcogenides in ethylenediamine , 1999 .

[36]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[37]  W. Sheldrick,et al.  Solventothermal Synthesis of Solid‐State Chalcogenidometalates , 1997 .

[38]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[39]  Norris,et al.  Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. , 1996, Physical review. B, Condensed matter.

[40]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[41]  D. Nesbitt,et al.  Modified power law behavior in quantum dot blinking: a novel role for biexcitons and auger ionization. , 2009, Nano letters.

[42]  M. Kanatzidis,et al.  Polyselenide chemistry of indium and thallium in dimethylformamide, acetonitrile, and water. Syntheses, structures, and properties of the new complexes [In2(Se4)4(Se5)]4-, [In2Se2(Se4)2]2-, [In3Se3(Se4)3]3-, and [Tl3Se3(Se4)3]3- , 1993 .