Controllability and Observability of Linear Time-Invariant Uncertain Systems Irrespective of Bounds of Uncertain Parameters

In this paper, the controllability and observability of linear time-invariant uncertain systems are investigated. The systems under consideration contain time-invariant uncertain parameters that may take arbitrarily large values. In such a situation, the locations of uncertain parameters in system matrices play an important role. We examine the permissible locations of uncertain parameters in system matrices for a linear uncertain system to be controllable and observable independently of the bounds of the uncertain parameters. The objective of this paper is to show that a linear uncertain system is controllable and observable, irrespective of the bounds of uncertain parameters, if and only if the system has a particular configuration called a complete generalized antisymmetric stepwise configuration (CGASC). Furthermore, the dual configuration of a CGASC is introduced and studied here.

[1]  Jing Zhang,et al.  Robust controllability for a class of uncertain linear time-invariant MIMO systems , 2004, IEEE Trans. Autom. Control..

[2]  Ian R. Petersen Robust unobservability for uncertain linear systems with structured uncertainty , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[3]  Delin Chu,et al.  On the quadratic controllability and quadratic feedback minimality , 2002, IEEE Trans. Autom. Control..

[4]  J. Pearson,et al.  Structural controllability of multiinput linear systems , 1976 .

[5]  B. R. Barmish,et al.  Global and point controllability of uncertain dynamical systems , 1982 .

[6]  Ian R. Petersen,et al.  Weak robust controllability and observability of uncertain linear systems , 1999, IEEE Trans. Autom. Control..

[7]  Kehui Wei,et al.  Stabilization of linear time-invariant interval systems via constant state feedback control , 1994, IEEE Trans. Autom. Control..

[8]  Takao Fujii,et al.  On the connection between controllability and stabilizability of linear systems with structural uncertain parameters , 1993, Autom..

[9]  Ian R. Petersen,et al.  Notions of observability for uncertain linear systems with structured uncertainty , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[10]  John Doyle,et al.  A necessary and sufficient minimality condition for uncertain systems , 1999, IEEE Trans. Autom. Control..

[11]  Mario A. Rotea,et al.  Necessary and sufficient conditions for quadratic controllability of a class of uncertain systems , 1995 .

[12]  Valery A. Ugrinovskii Observability of linear stochastic uncertain systems , 2003, IEEE Trans. Autom. Control..

[13]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[14]  Jian Liang Wang,et al.  Necessary and sufficient conditions for the controllability of linear interval descriptor systems , 1998, Autom..

[15]  Anthony N. Michel,et al.  Necessary and sufficient conditions for the controllability and observability of a class of linear, time-invariant systems with interval plants , 1994, IEEE Trans. Autom. Control..

[16]  Jang Gyu Lee,et al.  Robustness of controllability and observability of continuous linear time-varying systems with parameter perturbations , 1999, IEEE Trans. Autom. Control..

[17]  Ching-tai Lin Structural controllability , 1974 .

[18]  L. Silverman,et al.  Characterization of structural controllability , 1976 .

[19]  R. E. Kalman,et al.  Controllability of linear dynamical systems , 1963 .

[20]  M.L.J. Hautus,et al.  Controllability and observability conditions of linear autonomous systems , 1969 .

[21]  William R. Cluett,et al.  Optimal choice of time-scaling factor for linear system approximations using Laguerre models , 1994, IEEE Trans. Autom. Control..

[22]  C. Soh,et al.  Robustness of uncertain descriptor systems , 1997 .

[23]  S. Shankar Sastry,et al.  The robustness of controllability and observability of linear time-varying systems , 1982 .

[24]  Ching-tai Lin System structure and minimal structural controllability , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[25]  K. Wei Quadratic stabilizability of linear systems with structural independent time-varying uncertainties , 1990 .

[26]  Jang Gyu Lee,et al.  The robustness of controllability and observability for discrete linear time-varying systems with norm-bounded uncertainty , 2005, IEEE Transactions on Automatic Control.

[27]  I. Petersen Notions of stabilizability and controllability for a class of uncertain linear systems , 1987 .

[28]  Jianliang Wang,et al.  Robustness of uncertain descriptor systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[29]  Jianliang Wang,et al.  Robust C-controllability and/or C-observability for uncertain descriptor systems with interval perturbations in all matrices , 1999, IEEE Trans. Autom. Control..

[30]  Takashi Amemiya,et al.  Stabilization of Linear Uncertain Delay Systems with Antisymmetric Stepwise Configurations , 2008 .