Logic Finite Automata

A standard finite state automaton is an abstract machine which may take a finite number of states. Some states are marked as accepting states, and an initial state is specified in which the machine starts, faced with a word w over a finite input alphabet ∑. A finite transition table specifies the possibilities to change states, consuming a certain prefix of the actual rest of the input word. The automaton accepts a word if it is possible to eventually reach an accepting state with the empty word, choosing appropriate transitions.

[1]  David H. D. Warren,et al.  Parsing as Deduction , 1983, ACL.

[2]  Maurice Gross,et al.  Electronic Dictionaries and Automata in Computational Linguistics , 1987, Lecture Notes in Computer Science.

[3]  Roland Hausser,et al.  Computation of Language , 1989, Symbolic Computation.

[4]  Krzysztof R. Apt,et al.  Logic Programming , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[5]  David H. D. Warren,et al.  Definite Clause Grammars for Language Analysis - A Survey of the Formalism and a Comparison with Augmented Transition Networks , 1980, Artif. Intell..

[6]  Paul Tarau,et al.  Elementary Logic Programs , 1990, PLILP.

[7]  Alfred V. Aho,et al.  Indexed Grammars—An Extension of Context-Free Grammars , 1967, SWAT.

[8]  Joxan Jaffar,et al.  Constraint logic programming , 1987, POPL '87.

[9]  Leonard Bolc,et al.  Natural Language Communication with Computers , 1978, Lecture Notes in Computer Science.

[10]  Gerald Gazdar,et al.  Applicability of Indexed Grammars to Natural Languages , 1988 .

[11]  Alain Colmerauer,et al.  Metamorphosis Grammars , 1978, Natural Language Communication with Computers.

[12]  John Wylie Lloyd,et al.  Foundations of Logic Programming , 1987, Symbolic Computation.

[13]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[14]  Jean H. Gallier Review: Harry R. Lewis, Christos H. Papadimitriou, Elements of the Theory of Computation , 1984 .

[15]  S. Ginsburg,et al.  Semigroups, Presburger formulas, and languages. , 1966 .

[16]  Stuart M. Shieber,et al.  Evidence against the context-freeness of natural language , 1985 .

[17]  Verónica Dahl,et al.  Logic Grammars , 1989, Symbolic Computation.

[18]  Mike Paterson,et al.  Linear unification , 1976, STOC '76.

[19]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .