Motivic Proof of a Character Formula for SL(2)

This paper provides a proof of a p-adic character formula by means of motivic integration. We use motivic integration to produce virtual Chow motives that control the values of the characters of all depth-zero supercuspidal representations on all topologically unipotent elements of p-adic SL(2); likewise, we find motives for the values of the Fourier transform of all regular elliptic orbital integrals having minimal nonnegative depth in their own Cartan subalgebra, on all topologically nilpotent elements of p-adic sl(2). We then find identities in the ring of virtual Chow motives over ℚ that relate these two classes of motives. These identities provide explicit expressions for the values of characters of all depth-zero supercuspidal representations of p-adic SL(2) as linear combinations of Fourier transforms of semisimple orbital integrals, thus providing a proof of a p-adic character formula.

[1]  N. Vavilov REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE (London Mathematical Society Student Texts 21) , 1995 .

[2]  Good orbital integrals , 2003, math/0311353.

[3]  Jacques Tits,et al.  Groupes réductifs sur un corps local , 1972 .

[4]  G. Lusztig,et al.  Representations of reductive groups over finite fields , 2004 .

[5]  J. Denef,et al.  Definable sets, motives and p-adic integrals , 1999, math/9910107.

[6]  Orbital integrals are motivic , 2002, math/0212236.

[7]  R. Langlands,et al.  L-Indistinguishability For SL (2) , 1979, Canadian Journal of Mathematics.

[8]  George Lusztig,et al.  Character sheaves, V , 1985 .

[9]  Y. Yaffe,et al.  An overview of arithmetic motivic integration , 2008, 0811.2160.

[10]  J. Preuner Harmonic analysis on reductive p-adic groups , 1974 .

[11]  A. J. Scholl,et al.  Classical Motives , 1994 .

[12]  T. Hales,et al.  Transfer Principle for the Fundamental Lemma , 2007, 0712.0708.

[13]  P. Sally,et al.  Characters of the discrete series of representations of sl(2) over a local field. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[14]  F. Loeser,et al.  Constructible motivic functions and motivic integration , 2008 .

[15]  Sally Pj,et al.  Characters of the discrete series of representations of sl(2) over a local field. , 1968 .

[16]  Jean Michel,et al.  Representations of Finite Groups of Lie Type , 1991 .

[17]  G. Lusztig,et al.  Representations of reductive groups over finite fields , 1976 .

[18]  G. Henniart,et al.  Local tame lifting for GL(N) I: Simple characters , 1996 .

[19]  J. Adler REFINED ANISOTROPIC K-TYPES AND SUPERCUSPIDAL REPRESENTATIONS , 1998 .

[20]  F. Murnaghan Characters of supercuspidal representations of classical groups , 1996 .

[21]  M. Vigneras Schur algebras of reductive p-adic groups, I , 2003 .

[22]  A. Moy,et al.  Unrefined minimal K-types forp-adic groups , 1994 .