Motivic Proof of a Character Formula for SL(2)
暂无分享,去创建一个
[1] N. Vavilov. REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE (London Mathematical Society Student Texts 21) , 1995 .
[2] Good orbital integrals , 2003, math/0311353.
[3] Jacques Tits,et al. Groupes réductifs sur un corps local , 1972 .
[4] G. Lusztig,et al. Representations of reductive groups over finite fields , 2004 .
[5] J. Denef,et al. Definable sets, motives and p-adic integrals , 1999, math/9910107.
[6] Orbital integrals are motivic , 2002, math/0212236.
[7] R. Langlands,et al. L-Indistinguishability For SL (2) , 1979, Canadian Journal of Mathematics.
[8] George Lusztig,et al. Character sheaves, V , 1985 .
[9] Y. Yaffe,et al. An overview of arithmetic motivic integration , 2008, 0811.2160.
[10] J. Preuner. Harmonic analysis on reductive p-adic groups , 1974 .
[11] A. J. Scholl,et al. Classical Motives , 1994 .
[12] T. Hales,et al. Transfer Principle for the Fundamental Lemma , 2007, 0712.0708.
[13] P. Sally,et al. Characters of the discrete series of representations of sl(2) over a local field. , 1968, Proceedings of the National Academy of Sciences of the United States of America.
[14] F. Loeser,et al. Constructible motivic functions and motivic integration , 2008 .
[15] Sally Pj,et al. Characters of the discrete series of representations of sl(2) over a local field. , 1968 .
[16] Jean Michel,et al. Representations of Finite Groups of Lie Type , 1991 .
[17] G. Lusztig,et al. Representations of reductive groups over finite fields , 1976 .
[18] G. Henniart,et al. Local tame lifting for GL(N) I: Simple characters , 1996 .
[19] J. Adler. REFINED ANISOTROPIC K-TYPES AND SUPERCUSPIDAL REPRESENTATIONS , 1998 .
[20] F. Murnaghan. Characters of supercuspidal representations of classical groups , 1996 .
[21] M. Vigneras. Schur algebras of reductive p-adic groups, I , 2003 .
[22] A. Moy,et al. Unrefined minimal K-types forp-adic groups , 1994 .