A posteriori error estimation for convection dominated problems on anisotropic meshes

A singularly perturbed convection{difiusion problem in two and three space dimensions is discretized using the streamline upwind Petrov Galerkin (SUPG) variant of the flnite element method. The dominant convection frequently gives rise to solutions with layers; hence anisotropic flnite elements can be applied advantageously. The main focus is on a posteriori energy norm error estimation that is robust in the perturbation parameter and with respect to the mesh anisotropy. A residual error estimator and a local problem error estimator are proposed and investigated. The analysis reveals that the upper error bound depends on the alignment of the anisotropies of the mesh and of the solution. Hence reliable error estimation is possible for suitable anisotropic meshes. The lower error bound depends on the problem data via a local mesh Peclet number. Thus e‐cient error estimation is achieved for small mesh Peclet numbers. Altogether, error estimation approaches for isotropic meshes are successfully extended to anisotropic elements. Several numerical experiments support the analysis.

[1]  G. Kunert Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes , 2001 .

[2]  Simona Perotto,et al.  An anisotropic a-posteriori error estimate for a convection-diffusion problem , 2001 .

[3]  Gerd Kunert Robust a Posteriori Error Estimation for a Singularly Perturbed Reaction–Diffusion Equation on Anisotropic Tetrahedral Meshes , 2001, Adv. Comput. Math..

[4]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  Volker John,et al.  A numerical study of a posteriori error estimators for convection–diffusion equations , 2000 .

[7]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[8]  Lutz Angermann Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems , 2005, Computing.

[9]  Gert Lube,et al.  Stabilized Galerkin methods and layer-adapted grids for elliptic problems , 1998 .

[10]  Gerd Kunert,et al.  A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .

[11]  David Kay,et al.  The reliability of local error estimators for convection–diffusion equations , 2001 .

[12]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[13]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[14]  Gerd Kunert,et al.  An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes , 2000, Numerische Mathematik.

[15]  M. Stynes,et al.  Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .

[16]  Natalia Kopteva Maximum Norm A Posteriori Error Estimates for a One-Dimensional Convection-Diffusion Problem , 2001, SIAM J. Numer. Anal..

[17]  Kunibert G. Siebert,et al.  An a posteriori error estimator for anisotropic refinement , 1996 .

[18]  Gerd Kunert,et al.  Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes , 2000, Numerische Mathematik.

[19]  Christoph Pflaum,et al.  On a posteriori error estimators in the infinite element method on anisotropic meshes. , 1999 .

[20]  Rüdiger Verfürth,et al.  Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation , 1998 .

[21]  Gerd Kunert,et al.  A Local Problem Error Estimator for Anisotropic Tetrahedral Finite Element Meshes , 2001, SIAM J. Numer. Anal..

[22]  Torsten Linß,et al.  The sdfem on Shishkin meshes for linear convection-diffusion problems , 2001, Numerische Mathematik.

[23]  Giancarlo Sangalli,et al.  A robust a posteriori estimator for the Residual-free Bubbles method applied to advection-diffusion problems , 2001, Numerische Mathematik.

[24]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[25]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[26]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .