Contact drying: a review of experimental and mechanistic modeling approaches.

Drying is one of the most complex unit operations with simultaneous heat and mass transfer. The contact drying process is also not well understood as several physical phenomena occur concurrently. This paper reviews current experimental and modeling approaches employed towards a better understanding of the contact drying operation. Additionally, an overview of some fundamental aspects relating to contact drying is provided. A brief discussion of some model extensions such as incorporation of noncontact forces, interstitial fluids and attrition rate is also presented.

[1]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[2]  F. Štěpánek,et al.  Mathematical modelling of solvent drying from a static particle bed , 2006 .

[3]  M. Michael Yovanovich,et al.  Review of Elastic and Plastic Contact Conductance Models: Comparison with Experiment , 1994 .

[4]  Z. Sztabert SIZE SELECTION OF VACUUM CONTACT DRYER WITH MECHANICALLY MIXED PARTICULATE MATERIAL , 1989 .

[5]  Jerry Workman,et al.  Practical guide to interpretive near-infrared spectroscopy , 2007 .

[6]  R. A. Fisher On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines , 1926, The Journal of Agricultural Science.

[7]  Kati Pöllänen,et al.  Qualitative in situ analysis of multiple solid-state forms using spectroscopy and partial least squares discriminant modeling. , 2007, Journal of pharmaceutical sciences.

[8]  K. Kogermann,et al.  Understanding solid-state transformations during dehydration : new insights using vibrational spectroscopy and multivariate modelling , 2008 .

[9]  B. Chaudhuri,et al.  Quantifying drying performance of a filter dryer: Experiments and simulations , 2012 .

[10]  E. Lippincott,et al.  Theoretical and experimental resonance Raman intensities for the manganate ion , 1975 .

[11]  Leroy S. Fletcher,et al.  Review of Models for Thermal Contact Conductance of Metals , 1997 .

[12]  Bruno C. Hancock,et al.  Process modeling in the pharmaceutical industry using the discrete element method. , 2009, Journal of pharmaceutical sciences.

[13]  P. Toledo,et al.  Pore-level modeling of isothermal drying of pore networks: Effects of gravity and pore shape and size distributions on saturation and transport parameters , 2005 .

[14]  Arun S. Mujumdar,et al.  Advances in drying , 1980 .

[15]  D. Massart,et al.  Near-infrared spectroscopy applications in pharmaceutical analysis. , 2007, Talanta.

[16]  S. Byrn,et al.  Analysis of the Effect of Particle Size on Polymorphic Quantitation by Raman Spectroscopy , 2006, Applied spectroscopy.

[17]  Joseph L. Kanig,et al.  The theory and practice of industrial pharmacy , 1970 .

[18]  A. Mujumdar,et al.  Immersed surface heat transfer in a vibrated fluidized bed , 1987 .

[19]  Hans J. Herrmann,et al.  Modeling granular media on the computer , 1998 .

[20]  F. Heimann,et al.  Vacuum contact drying of mechanically agitated, coarse, hygroscopic bulk material , 1989 .

[21]  Julio M. Ottino,et al.  Particle dynamics simulation: a hybrid technique applied to granular mixing , 1998 .

[22]  G A Stephenson,et al.  Characterization of the solid state: quantitative issues. , 2001, Advanced drug delivery reviews.

[23]  R. McCreery,et al.  Raman Spectroscopy for Chemical Analysis: McCreery/Raman Spectroscopy , 2005 .

[24]  Benjamin J. Glasser,et al.  Impact of agitated drying on crystal morphology: KCl–water system , 2003 .

[25]  M. Mehicic,et al.  Practical Raman Spectroscopy : Springer Verlag, Berlin, 1989 (ISBN 3-540-50254-8). viii + 157 pp. Price DM 78.00 , 1990 .

[26]  George Zhou,et al.  Determination and differentiation of surface and bound water in drug substances by near infrared spectroscopy. , 2003, Journal of pharmaceutical sciences.

[27]  S. Whitaker Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying , 1977 .

[28]  F. Štěpánek,et al.  Model-based scale-up of vacuum contact drying of pharmaceutical compounds , 2011 .

[29]  Kenneth R Morris,et al.  Determination of fluidized bed granulation end point using near-infrared spectroscopy and phenomenological analysis. , 2005, Journal of pharmaceutical sciences.

[30]  G. Bonifazi,et al.  Influence of time on crystal attrition in a stirred vessel , 1996 .

[31]  A. Mujumdar Handbook of Industrial Drying , 2020 .

[32]  R. Peczalski,et al.  Optimization of crystalline powders vacuum contact drying with intermittent stirring , 2008 .

[33]  S. Tomas,et al.  THE INFLUENCE OF PRESSURE AND TEMPERATURE ON THE KINETICS OF VACUUM DRYING OF KETOPROFEN , 1997 .

[34]  Roger B. Keey,et al.  Drying principles and practice , 1972 .

[35]  D. T. Witte,et al.  Vibrational spectrometry for the assessment of active substance in metoprolol tablets: a comparison between transmission and diffuse reflectance near-infrared spectrometry. , 1996, Journal of pharmaceutical and biomedical analysis.

[36]  Christian Airiau,et al.  Monitoring API Drying Operations with NIR , 2005 .

[37]  R. Lodder,et al.  Analysis of Intact Tablets by Near-Infrared Reflectance Spectrometry , 1988 .

[38]  Joseph J. McCarthy,et al.  Heat conduction in granular materials , 2001 .

[39]  David Littlejohn,et al.  Real-time monitoring of powder mixing in a convective blender using non-invasive reflectance NIR spectrometry. , 2008, The Analyst.

[40]  Marc Prat,et al.  Numerical and experimental network study of evaporation in capillary porous media. Drying rates , 1998 .

[41]  M. Pelletier,et al.  Quantitative Analysis Using Raman Spectrometry , 2003, Applied spectroscopy.

[42]  Jukka Rantanen,et al.  Determination of Particle Size in a Fluidized Bed Granulator With a Near Infrared Set-up , 1998 .

[43]  Joseph J. McCarthy,et al.  Stress effects on the conductivity of particulate beds , 2002 .

[44]  R. B. Keey,et al.  Drying of Loose and Particulate Materials , 1992 .

[45]  H. Siesler,et al.  Near-infrared spectroscopy:principles,instruments,applications , 2002 .

[46]  A. Jagota,et al.  The effective thermal conductivity of a packing of spheres , 1990 .

[47]  Fernando J. Muzzio,et al.  Experimentally Validated Numerical Modeling of Heat Transfer in Granular Flow in Rotating Vessels , 2011 .

[48]  Leroy S. Fletcher,et al.  Recent Developments in Contact Conductance Heat Transfer , 1988 .

[49]  R. G. Cox,et al.  Slow viscous motion of a sphere parallel to a plane wall—I Motion through a quiescent fluid , 1967 .

[50]  R. Peczalski,et al.  Modeling of vacuum contact drying of crystalline powders packed beds , 2008 .

[51]  M. Ghadiri,et al.  Prediction of attrition in agitated particle beds , 2011 .

[52]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[53]  E. Schlünder,et al.  Vacuum Contact Drying of Free Flowing Mechanically Agitated Particulate Material , 1984 .

[54]  Patricia Arlabosse,et al.  Identification of the Limiting Mechanism in Contact Drying of Agitated Sewage Sludge , 2007 .

[55]  Gabriele Reich,et al.  Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. , 2005, Advanced drug delivery reviews.

[56]  Julien Andrieu,et al.  Experimental Study and Modeling of Crystalline Powders Vacuum Contact Drying with Intermittent Stirring , 2007 .

[57]  E. Tsotsas,et al.  Continuous versus discrete modelling of heat transfer to agitated beds , 2008 .

[58]  Jennifer S. Curtis,et al.  Cylindrical object contact detection for use in discrete element method simulations, Part II—Experimental validation , 2010 .

[59]  Stefan Andersson-Engels,et al.  Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets. , 2005, Analytical chemistry.

[60]  S. Nowicki,et al.  MICROSCOPIC DETERMINATION OF TRANSPORT PARAHETERS IN DRYING POROUS MEDIA , 1992 .

[61]  Jonathan Seville,et al.  Interparticle forces in fluidisation: a review , 2000 .

[62]  A. Yu,et al.  Discrete particle simulation of particulate systems: Theoretical developments , 2007 .

[63]  C Vervaet,et al.  Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. , 2011, International journal of pharmaceutics.

[64]  J. Rantanen,et al.  On-line monitoring of moisture content in an instrumented fluidized bed granulator with a multi-channel NIR moisture sensor , 1998 .

[65]  F. Štěpánek,et al.  Vacuum Contact Drying Kinetics: An Experimental Parametric Study , 2005 .

[66]  Raymond D. Mindlin,et al.  Compliance of elastic bodies in contact , 1949 .

[67]  H.J.M. Slangen,et al.  THE NEED FOR FUNDAMENTAL RESEARCH ON DRYING AS PERCEIVED BY THE EUROPEAN CHEMICAL INDUSTRY , 2000 .

[68]  G. Lian,et al.  Elastohydrodynamic collisions of solid spheres , 1996, Journal of Fluid Mechanics.

[69]  J. Wiss,et al.  Industrial Applications of Online Monitoring of Drying Processes of Drug Substances Using NIR , 2008 .

[70]  J. Nastaj VACUUM CONTACT DRYING OF SELECTED BIOTECHNOLOGY PRODUCTS , 1994 .

[71]  Joseph J. McCarthy,et al.  Conductivity of granular media with stagnant interstitial fluids via thermal particle dynamics simulation , 2002 .

[72]  Jens Burgschweiger,et al.  Experimental investigation and modelling of continuous fluidized bed drying under steady-state and dynamic conditions , 2002 .

[73]  P. Frake,et al.  Process control and end-point determination of a fluid bed granulation by application of near infra-red spectroscopy , 1997 .

[74]  E. Schlünder,et al.  Vacuum contact drying of mechanically agitated granular beds wetted with a binary mixture , 1988 .

[75]  J. Bridgwater,et al.  Attrition of particulate solids under shear , 1994 .

[76]  J. MalczewskiKaminski,et al.  VACUUM CONTACT DRYING OF SEEDS , 1989 .

[77]  J. Bridgwater,et al.  A review of attrition and attrition test methods , 1987 .

[78]  Marc Prat,et al.  Pore network simulations of drying of capillary porous media. Influence of thermal gradients , 2003 .

[79]  Evangelos Tsotsas,et al.  Vacuum contact drying of mechanically agitated beds: The influence of hygroscopic behaviour on the drying rate curve , 1987 .

[80]  T. Vickers,et al.  Effect of Powder Properties on the Intensity of Raman Scattering by Crystalline Solids , 2002 .

[81]  J. Rantanen,et al.  Novel identification of pseudopolymorphic changes of theophylline during wet granulation using near infrared spectroscopy. , 2001, Journal of pharmaceutical sciences.

[82]  A. Nordon,et al.  Studies of particle drying using non-invasive Raman spectrometry and particle size analysis. , 2011, The Analyst.

[83]  Richard L. McCreery,et al.  Raman Spectroscopy for Chemical Analysis , 2000 .

[84]  David Littlejohn,et al.  Effects of particle size and cohesive properties on mixing studied by non-contact NIR. , 2008, International journal of pharmaceutics.

[85]  J. J. McCarthy,et al.  Unsteady Heat Conduction in Granular Materials , 2000 .

[86]  K. A. Connors The Karl Fischer Titration of Water , 1988 .

[87]  Masayuki Horio,et al.  Numerical simulation of cohesive powder behavior in a fluidized bed , 1998 .

[88]  J G Khinast,et al.  The effect of agitated drying on the morphology of L-threonine (needle-like) crystals. , 2004, International journal of pharmaceutics.

[89]  Juraj Kosek,et al.  Modeling of Transport and Transformation Processes in Porous and Multiphase Bodies , 2005 .

[90]  Evangelos Tsotsas,et al.  Vacuum contact drying of free flowing mechanically agitated multigranular packings , 1986 .

[91]  Martin Kohout,et al.  Multi-Scale Analysis of Vacuum Contact Drying , 2007 .

[92]  R. Reed,et al.  In-line monitoring of moisture content in fluid bed dryers using near-IR spectroscopy with consideration of sampling effects on method accuracy. , 2005, Analytical chemistry.

[93]  Fei Wang,et al.  Measurement and simulation of the contact drying of sewage sludge in a Nara-type paddle dryer , 2009 .