Iterative Solution of Augmented Systems Arising in Interior Methods

Iterative methods are proposed for certain augmented systems of linear equations that arise in interior methods for general nonlinear optimization. Interior methods define a sequence of KKT equations that represent the symmetrized (but indefinite) equations associated with Newton's method for a point satisfying the perturbed optimality conditions. These equations involve both the primal and dual variables and become increasingly ill-conditioned as the optimization proceeds. In this context, an iterative linear solver must not only handle the ill-conditioning but also detect the occurrence of KKT matrices with the wrong matrix inertia. A one-parameter family of equivalent linear equations is formulated that includes the KKT system as a special case. The discussion focuses on a particular system from this family, known as the “doubly augmented system,” that is positive definite with respect to both the primal and dual variables. This property means that a standard preconditioned conjugate-gradient method involving both primal and dual variables will either terminate successfully or detect if the KKT matrix has the wrong inertia. Constraint preconditioning is a well-known technique for preconditioning the conjugate-gradient method on augmented systems. A family of constraint preconditioners is proposed that provably eliminates the inherent ill-conditioning in the augmented system. A considerable benefit of combining constraint preconditioning with the doubly augmented system is that the preconditioner need not be applied exactly. Two particular “active-set” constraint preconditioners are formulated that involve only a subset of the rows of the augmented system and thereby may be applied with considerably less work. Finally, some numerical experiments illustrate the numerical performance of the proposed preconditioners and highlight some theoretical properties of the preconditioned matrices.

[1]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[2]  Philippe L. Toint,et al.  Towards an efficient sparsity exploiting newton method for minimization , 1981 .

[3]  Iain S. Duff,et al.  MA27 -- A set of Fortran subroutines for solving sparse symmetric sets of linear equations , 1982 .

[4]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[5]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[6]  N. Gould On the Accurate Determination of Search Directions for Simple Differentiable Penalty Functions , 1986 .

[7]  P. Gill,et al.  Solving Reduced KKT Systems in Barrier Methods for Linear and Quadratic Programming , 1991 .

[8]  Michael A. Saunders,et al.  Preconditioners for Indefinite Systems Arising in Optimization , 1992, SIAM J. Matrix Anal. Appl..

[9]  Robert J. Vanderbei,et al.  Symmetric indefinite systems for interior point methods , 1993, Math. Program..

[10]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[11]  W. Murray,et al.  Newton methods for large-scale linear equality-constrained minimization , 1993 .

[12]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[13]  Michael A. Saunders,et al.  Primal—dual methods for linear programming , 1995, Math. Program..

[14]  M. Saunders,et al.  SOLVING REGULARIZED LINEAR PROGRAMS USING BARRIER METHODS AND KKT SYSTEMS , 1996 .

[15]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[16]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[17]  O. Ghattas,et al.  Large-Scale SQP Methods for Optimization of Navier-Stokes Flows , 1997 .

[18]  Jan Vlcek,et al.  Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems , 1998, Numer. Linear Algebra Appl..

[19]  Anders Forsgren,et al.  Primal-Dual Interior Methods for Nonconvex Nonlinear Programming , 1998, SIAM J. Optim..

[20]  J. Gondzio,et al.  Regularized Symmetric Indefinite Systems in Interior Point Methods for Linear and Quadratic Optimization , 1999 .

[21]  Robert J. Vanderbei,et al.  An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..

[22]  V. Simoncini,et al.  Block--diagonal and indefinite symmetric preconditioners for mixed finite element formulations , 1999 .

[23]  Nicholas I. M. Gould,et al.  Solving the Trust-Region Subproblem using the Lanczos Method , 1999, SIAM J. Optim..

[24]  Y. Notay Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..

[25]  Jorge J. Moré,et al.  COPS: Large-scale nonlinearly constrained optimization problems , 2000 .

[26]  Ilaria Perugia,et al.  Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations , 2000, Numer. Linear Algebra Appl..

[27]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[28]  Nicholas I. M. Gould,et al.  On the Solution of Equality Constrained Quadratic Programming Problems Arising in Optimization , 2001, SIAM J. Sci. Comput..

[29]  William W. Hager,et al.  Minimizing a Quadratic Over a Sphere , 2001, SIAM J. Optim..

[30]  Todd Munson,et al.  Benchmarking optimization software with COPS. , 2001 .

[31]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[32]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[33]  A. Forsgren Inertia-controlling factorizations for optimization algorithms , 2002 .

[34]  Stephen J. Wright,et al.  Properties of the Log-Barrier Function on Degenerate Nonlinear Programs , 2002, Math. Oper. Res..

[35]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[36]  Valeria Simoncini,et al.  Flexible Inner-Outer Krylov Subspace Methods , 2002, SIAM J. Numer. Anal..

[37]  George Biros,et al.  Inexactness Issues in the Lagrange-Newton-Krylov-Schur Method for PDE-constrained Optimization , 2003 .

[38]  R. Tuminaro,et al.  A parallel block multi-level preconditioner for the 3D incompressible Navier--Stokes equations , 2003 .

[39]  Luca Bergamaschi,et al.  Preconditioning Indefinite Systems in Interior Point Methods for Optimization , 2004, Comput. Optim. Appl..

[40]  Todd Munson,et al.  Benchmarking optimization software with COPS 3.0. , 2001 .

[41]  Philip E. Gill,et al.  A primal-dual trust region algorithm for nonlinear optimization , 2004, Math. Program..

[42]  Jan Vlcek,et al.  Interior-point method for non-linear non-convex optimization , 2004, Numer. Linear Algebra Appl..

[43]  H. Dollar Extending Constraint Preconditioners for Saddle Point Problems , 2005 .

[44]  D. Sorensen,et al.  A new class of preconditioners for large-scale linear systems from interior point methods for linear programming , 2005 .

[45]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[46]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[47]  N. Gould,et al.  On iterative methods and implicit-factorization preconditioners for regularized saddle-point systems , 2005 .

[48]  E. M. Gertz,et al.  Support vector machine classifiers for large data sets. , 2006 .

[49]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .