The cooling history of the Acapulco meteorite as recorded by the 244Pu and 40Ar-39Ar chronometers

[1]  R. Clayton,et al.  A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting , 1996 .

[2]  M. Lindstrom,et al.  Acapulco- and Lodran-like achondrites: Petrology, geochemistry, chronology, and origin , 1996 .

[3]  A. Goresy,et al.  Diverse Chemical Zoning Trends in Acapulco Chromites: How Many Sources for the Parental Materials? , 1995 .

[4]  J. Zipfel,et al.  Chemical composition and origin of the Acapulco meteorite , 1995 .

[5]  A. Davis,et al.  The distribution of aluminum-26 in the early Solar System—A reappraisal , 1995 .

[6]  E. Zinner,et al.  Survival of isotopically heterogeneous graphite in a differentiated meteorite , 1995, Nature.

[7]  M. Domeneghetti,et al.  Antarctic FRO90011 lodranite: Cooling history from pyroxene crystal chemistry and microstructure , 1994 .

[8]  J. L. Jordan,et al.  Chemically fractionated fission-xenon in meteorites and on the earth , 1994 .

[9]  J. Goldstein,et al.  ACAPULCO - CONSTRAINING THE COOLING HISTORY OF A PARENT BODY , 1994 .

[10]  M. Spilde,et al.  Orthopyroxene as a recorder of primitive achondrite petrogenesis: Major-, minor-, and trace-element systematics of orthopyroxene in Lodran. [Abstract only] , 1994 .

[11]  K. Marti,et al.  I-Xe studies of the Acapulco meteorite: Absolute I-Xe ages of individual phosphate grains and the Bjurböle standard , 1994 .

[12]  H. Takeda,et al.  Thermal history of lodranites Yamato 74357 and MAC88177 as inferred from the chemical zoning of pyroxene and olivine , 1994 .

[13]  J. Goldstein,et al.  A comparison of metallographic cooling rate methods used in meteorites , 1994 .

[14]  G. Lugmair,et al.  60Fe in eucrites , 1993 .

[15]  Nobuo,et al.  Noble gases in the unique meteorites Yamato-74063 and -74357 , 1993 .

[16]  G. Lugmair,et al.  Live Iron-60 in the Early Solar System , 1993, Science.

[17]  G. J. Taylor,et al.  Thermal history of chondrites: Hot accretion vs. metamorphic reheating , 1992 .

[18]  E. Watson,et al.  A study of strontium diffusion in K-feldspar, Na-K feldspar and anorthite using Rutherford Backscattering Spectroscopy , 1992 .

[19]  B. Lavielle,et al.  Search for 248Cm in the early Solar System , 1992 .

[20]  G. Manhès,et al.  U-Pb Study of the Acapulco Meteorite , 1992 .

[21]  S. Galer,et al.  Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis , 1992 .

[22]  J. Zipfel,et al.  Thermal History of the Acapulco Meteorite , 1992 .

[23]  K. Marti,et al.  Search for N and Xe Carriers in the Acapulco Meteorite , 1992 .

[24]  G. Wasserburg,et al.  Samarium-neodymium evolution of meteorites , 1992 .

[25]  W. Lanford,et al.  Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques , 1991 .

[26]  Y. Yoshida,et al.  Noble gas composition in unique meteorite Yamato-74063 , 1991 .

[27]  Hideyasu,et al.  Yamato-74063: Chondritic meteorite classified between E and H chondrite groups , 1991 .

[28]  M. Johnson,et al.  Actinide abundances in ordinary chondrites , 1990 .

[29]  L. L. Lundberg,et al.  Plutonium, uranium and rare earths in the phosphates of ordinary chondrites—the quest for a chronometer , 1989 .

[30]  P. Pellas,et al.  Thermal histories of ordinary chondrite parent asteroids , 1988 .

[31]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[32]  M. Bourot‐Denise,et al.  Very High Track-Densities in Forest Vale (H4) Merrillites: Was Cm248 Alive in the Early Solar System? , 1987 .

[33]  H. Takeda,et al.  Mineralogical comparison and cooling history of lunar and chondritic vesicular melt breccias , 1984 .

[34]  K. Ozawa Olivine-spinel geospeedometry: Analysis of diffusion-controlled Mg-Fe2+ exchange , 1984 .

[35]  N. S. Brar,et al.  Degassing of meteorite parent bodies , 1984 .

[36]  C. Perron,et al.  Track formation models: A short review , 1984 .

[37]  J. Schutt,et al.  Thiel Mountains, A New Area for Meteorite Collection in Antarctica , 1983 .

[38]  Kiyoshi,et al.  Physical properties of some unequilibrated Antarctic ordinary chondrites , 1982 .

[39]  H. Wänke,et al.  Allan Hills 77081—an unusual stony meteorite , 1982 .

[40]  E. Jessberger,et al.  Shock-effects on the K-Ar system of plagioclase feldspar and the age of anorthosite inclusions from North-Eastern Minnesota , 1982 .

[41]  J. Evans,et al.  Cosmogenic nuclides in recently fallen meteorites: Evidence for galactic cosmic ray variations during the period 1967–1978 , 1982 .

[42]  H. Wänke,et al.  The Acapulco meteorite: Chemistry, mineralogy and irradiation effects , 1981 .

[43]  F. Podosek,et al.  Noble gas retention chronologies for the St Séverin meteorite , 1981 .

[44]  D. Storzer,et al.  244Pu fission track thermometry and its application to stony meteorites , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[45]  Elmar K. Jessberger,et al.  40Ar39Ar ages of Allende , 1980 .

[46]  J. R. Ashworth,et al.  Accretion temperature of the Tieschitz, H3, chondritic meteorite , 1979, Nature.

[47]  K. Keil,et al.  The Shaw meteorite: History of a chondrite consisting of impact-melted and metamorphic lithologies , 1979 .

[48]  E. Anders,et al.  Volatile elements in chondrites: metamorphism or nebular fractionation? , 1978 .

[49]  E. Jessberger,et al.  CORRIGENDUM: A refined ultrahigh-vacuum furnace for rare gas analysis , 1978 .

[50]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[51]  D. Storzer,et al.  Uranium and plutonium in chondritic phosphates , 1975 .

[52]  L. Grossman,et al.  Early chemical history of the solar system , 1974 .

[53]  Martin H. Dodson,et al.  Closure temperature in cooling geochronological and petrological systems , 1973 .

[54]  J. Wasson Formation of ordinary chondrites. , 1972 .

[55]  L. Nyquist,et al.  Thermal release characteristics of spallogenic He, Ne, and Ar from the Carbo iron meteorite , 1972 .

[56]  N. Brereton Corrections for interfering isotopes in the40Ar/39Ar dating method , 1970 .

[57]  R. T. Dodd Metamorphism of the ordinary chondrites: A review , 1969 .

[58]  B. Mason,et al.  The Shaw meteorite. , 1967 .

[59]  E. Anders Origin, age, and composition of meteorites , 1964 .

[60]  H. Haack,et al.  Metallographic Cooling Rates Of Iab Iron-Meteorites , 1995 .

[61]  O. Eugster,et al.  Common asteroid break-up events of eucrites, diogenites, and howardites and cosmic-ray production rates for noble gases in achondrites , 1995 .

[62]  T. Hiroi,et al.  Inhomogeneous distribution of materials in lodranites-acapulcoites and IAB irons and their common formation processes , 1994 .

[63]  G. Manhès,et al.  UPb systematics of phosphates from equilibrated ordinary chondrites , 1994 .

[64]  C. Perron Cosmic ray-induced spallation recoil tracks in meteoritic phosphates: Simulation at the CERN synchrocyclotron , 1993 .

[65]  J. Zipfel,et al.  Chemical Composition of New Acapulcoites and Lodranites , 1993 .

[66]  G. Wasserburg,et al.  The Sm-Nd systematics of silicate inclusions in iron meteorites: Results from Caddo (IAB) , 1993 .

[67]  K. Marti,et al.  COSMIC-RAY EXPOSURE HISTORY OF ORDINARY CHONDRITES , 1992 .

[68]  J. Wood,et al.  What heated the parent meteorite planets , 1991 .

[69]  M. Gaffey,et al.  Protoplanetary thermal metamorphism - The hypothesis of electromagnetic induction in the protosolar wind , 1991 .

[70]  M. S. Matthews,et al.  The sun in time , 1991 .

[71]  A. Tsuchiyama,et al.  Petrology of unique meteorites, Y-74063, Y-74357, Y-75261, Y-75274, Y-75300, Y-75305, A-77081, A-78230, and Y-8002. , 1990 .

[72]  M. Gaffey,et al.  Meteoritic parent bodies: nature, number, size and relation to present-day asteroids. , 1989 .

[73]  T. Swindle,et al.  Iodine-xenon dating , 1988 .

[74]  M. Lipschutz,et al.  Highly labile elements , 1988 .

[75]  J. Morgan,et al.  H-chondrites - Trace element clues to their origin , 1985 .

[76]  S. Durrani,et al.  Fission-track annealing characteristics of meteoritic phosphates , 1984 .

[77]  N. Fujii,et al.  Ordinary chondrite parent body - An internal heating model , 1982 .

[78]  R. Clayton,et al.  Oxygen isotopic composition of aubrites and some unique meteorites. , 1980 .

[79]  J. Fabriès Spinel-olivine geothermometry in peridotites from ultramafic complexes , 1979 .

[80]  G. Turner Argon 40-argon 39 dating - The optimization of irradiation parameters , 1971 .

[81]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[82]  H. R. Hart,et al.  The particle track record of the Ocean of Storms , 1971 .

[83]  L. Nyquist,et al.  The Thermal Release of Rare Gases from Separated Minerals of the Mócs Meteorite , 1969 .

[84]  J. Zähringer Rare gases in stony meteorites , 1968 .

[85]  D. Lal,et al.  Techniques for proper revelation and viewing of etch-tracks in meteoritic and terrestrial minerals , 1968 .

[86]  E. Anders,et al.  CHEMICAL FRACTIONATIONS IN METEORITES. II. ABUNDANCE PATTERNS AND THEIR INTERPRETATION. , 1967 .

[87]  J. Larimer Chemical fractionations in meteorites—I. Condensation of the elements , 1967 .

[88]  P. Price,et al.  Origins of fossil charged‐particle tracks in meteorites , 1967 .

[89]  C. Stevens,et al.  Decay Properties of Plutonium-244, and Comments on its Existence in Nature , 1966, Nature.