The cooling history of the Acapulco meteorite as recorded by the 244Pu and 40Ar-39Ar chronometers
暂无分享,去创建一个
[1] R. Clayton,et al. A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting , 1996 .
[2] M. Lindstrom,et al. Acapulco- and Lodran-like achondrites: Petrology, geochemistry, chronology, and origin , 1996 .
[3] A. Goresy,et al. Diverse Chemical Zoning Trends in Acapulco Chromites: How Many Sources for the Parental Materials? , 1995 .
[4] J. Zipfel,et al. Chemical composition and origin of the Acapulco meteorite , 1995 .
[5] A. Davis,et al. The distribution of aluminum-26 in the early Solar System—A reappraisal , 1995 .
[6] E. Zinner,et al. Survival of isotopically heterogeneous graphite in a differentiated meteorite , 1995, Nature.
[7] M. Domeneghetti,et al. Antarctic FRO90011 lodranite: Cooling history from pyroxene crystal chemistry and microstructure , 1994 .
[8] J. L. Jordan,et al. Chemically fractionated fission-xenon in meteorites and on the earth , 1994 .
[9] J. Goldstein,et al. ACAPULCO - CONSTRAINING THE COOLING HISTORY OF A PARENT BODY , 1994 .
[10] M. Spilde,et al. Orthopyroxene as a recorder of primitive achondrite petrogenesis: Major-, minor-, and trace-element systematics of orthopyroxene in Lodran. [Abstract only] , 1994 .
[11] K. Marti,et al. I-Xe studies of the Acapulco meteorite: Absolute I-Xe ages of individual phosphate grains and the Bjurböle standard , 1994 .
[12] H. Takeda,et al. Thermal history of lodranites Yamato 74357 and MAC88177 as inferred from the chemical zoning of pyroxene and olivine , 1994 .
[13] J. Goldstein,et al. A comparison of metallographic cooling rate methods used in meteorites , 1994 .
[14] G. Lugmair,et al. 60Fe in eucrites , 1993 .
[15] Nobuo,et al. Noble gases in the unique meteorites Yamato-74063 and -74357 , 1993 .
[16] G. Lugmair,et al. Live Iron-60 in the Early Solar System , 1993, Science.
[17] G. J. Taylor,et al. Thermal history of chondrites: Hot accretion vs. metamorphic reheating , 1992 .
[18] E. Watson,et al. A study of strontium diffusion in K-feldspar, Na-K feldspar and anorthite using Rutherford Backscattering Spectroscopy , 1992 .
[19] B. Lavielle,et al. Search for 248Cm in the early Solar System , 1992 .
[20] G. Manhès,et al. U-Pb Study of the Acapulco Meteorite , 1992 .
[21] S. Galer,et al. Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis , 1992 .
[22] J. Zipfel,et al. Thermal History of the Acapulco Meteorite , 1992 .
[23] K. Marti,et al. Search for N and Xe Carriers in the Acapulco Meteorite , 1992 .
[24] G. Wasserburg,et al. Samarium-neodymium evolution of meteorites , 1992 .
[25] W. Lanford,et al. Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques , 1991 .
[26] Y. Yoshida,et al. Noble gas composition in unique meteorite Yamato-74063 , 1991 .
[27] Hideyasu,et al. Yamato-74063: Chondritic meteorite classified between E and H chondrite groups , 1991 .
[28] M. Johnson,et al. Actinide abundances in ordinary chondrites , 1990 .
[29] L. L. Lundberg,et al. Plutonium, uranium and rare earths in the phosphates of ordinary chondrites—the quest for a chronometer , 1989 .
[30] P. Pellas,et al. Thermal histories of ordinary chondrite parent asteroids , 1988 .
[31] William H. Press,et al. Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .
[32] M. Bourot‐Denise,et al. Very High Track-Densities in Forest Vale (H4) Merrillites: Was Cm248 Alive in the Early Solar System? , 1987 .
[33] H. Takeda,et al. Mineralogical comparison and cooling history of lunar and chondritic vesicular melt breccias , 1984 .
[34] K. Ozawa. Olivine-spinel geospeedometry: Analysis of diffusion-controlled Mg-Fe2+ exchange , 1984 .
[35] N. S. Brar,et al. Degassing of meteorite parent bodies , 1984 .
[36] C. Perron,et al. Track formation models: A short review , 1984 .
[37] J. Schutt,et al. Thiel Mountains, A New Area for Meteorite Collection in Antarctica , 1983 .
[38] Kiyoshi,et al. Physical properties of some unequilibrated Antarctic ordinary chondrites , 1982 .
[39] H. Wänke,et al. Allan Hills 77081—an unusual stony meteorite , 1982 .
[40] E. Jessberger,et al. Shock-effects on the K-Ar system of plagioclase feldspar and the age of anorthosite inclusions from North-Eastern Minnesota , 1982 .
[41] J. Evans,et al. Cosmogenic nuclides in recently fallen meteorites: Evidence for galactic cosmic ray variations during the period 1967–1978 , 1982 .
[42] H. Wänke,et al. The Acapulco meteorite: Chemistry, mineralogy and irradiation effects , 1981 .
[43] F. Podosek,et al. Noble gas retention chronologies for the St Séverin meteorite , 1981 .
[44] D. Storzer,et al. 244Pu fission track thermometry and its application to stony meteorites , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[45] Elmar K. Jessberger,et al. 40Ar39Ar ages of Allende , 1980 .
[46] J. R. Ashworth,et al. Accretion temperature of the Tieschitz, H3, chondritic meteorite , 1979, Nature.
[47] K. Keil,et al. The Shaw meteorite: History of a chondrite consisting of impact-melted and metamorphic lithologies , 1979 .
[48] E. Anders,et al. Volatile elements in chondrites: metamorphism or nebular fractionation? , 1978 .
[49] E. Jessberger,et al. CORRIGENDUM: A refined ultrahigh-vacuum furnace for rare gas analysis , 1978 .
[50] R. Steiger,et al. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .
[51] D. Storzer,et al. Uranium and plutonium in chondritic phosphates , 1975 .
[52] L. Grossman,et al. Early chemical history of the solar system , 1974 .
[53] Martin H. Dodson,et al. Closure temperature in cooling geochronological and petrological systems , 1973 .
[54] J. Wasson. Formation of ordinary chondrites. , 1972 .
[55] L. Nyquist,et al. Thermal release characteristics of spallogenic He, Ne, and Ar from the Carbo iron meteorite , 1972 .
[56] N. Brereton. Corrections for interfering isotopes in the40Ar/39Ar dating method , 1970 .
[57] R. T. Dodd. Metamorphism of the ordinary chondrites: A review , 1969 .
[58] B. Mason,et al. The Shaw meteorite. , 1967 .
[59] E. Anders. Origin, age, and composition of meteorites , 1964 .
[60] H. Haack,et al. Metallographic Cooling Rates Of Iab Iron-Meteorites , 1995 .
[61] O. Eugster,et al. Common asteroid break-up events of eucrites, diogenites, and howardites and cosmic-ray production rates for noble gases in achondrites , 1995 .
[62] T. Hiroi,et al. Inhomogeneous distribution of materials in lodranites-acapulcoites and IAB irons and their common formation processes , 1994 .
[63] G. Manhès,et al. UPb systematics of phosphates from equilibrated ordinary chondrites , 1994 .
[64] C. Perron. Cosmic ray-induced spallation recoil tracks in meteoritic phosphates: Simulation at the CERN synchrocyclotron , 1993 .
[65] J. Zipfel,et al. Chemical Composition of New Acapulcoites and Lodranites , 1993 .
[66] G. Wasserburg,et al. The Sm-Nd systematics of silicate inclusions in iron meteorites: Results from Caddo (IAB) , 1993 .
[67] K. Marti,et al. COSMIC-RAY EXPOSURE HISTORY OF ORDINARY CHONDRITES , 1992 .
[68] J. Wood,et al. What heated the parent meteorite planets , 1991 .
[69] M. Gaffey,et al. Protoplanetary thermal metamorphism - The hypothesis of electromagnetic induction in the protosolar wind , 1991 .
[70] M. S. Matthews,et al. The sun in time , 1991 .
[71] A. Tsuchiyama,et al. Petrology of unique meteorites, Y-74063, Y-74357, Y-75261, Y-75274, Y-75300, Y-75305, A-77081, A-78230, and Y-8002. , 1990 .
[72] M. Gaffey,et al. Meteoritic parent bodies: nature, number, size and relation to present-day asteroids. , 1989 .
[73] T. Swindle,et al. Iodine-xenon dating , 1988 .
[74] M. Lipschutz,et al. Highly labile elements , 1988 .
[75] J. Morgan,et al. H-chondrites - Trace element clues to their origin , 1985 .
[76] S. Durrani,et al. Fission-track annealing characteristics of meteoritic phosphates , 1984 .
[77] N. Fujii,et al. Ordinary chondrite parent body - An internal heating model , 1982 .
[78] R. Clayton,et al. Oxygen isotopic composition of aubrites and some unique meteorites. , 1980 .
[79] J. Fabriès. Spinel-olivine geothermometry in peridotites from ultramafic complexes , 1979 .
[80] G. Turner. Argon 40-argon 39 dating - The optimization of irradiation parameters , 1971 .
[81] E. Anders,et al. Meteorites and the Early Solar System , 1971 .
[82] H. R. Hart,et al. The particle track record of the Ocean of Storms , 1971 .
[83] L. Nyquist,et al. The Thermal Release of Rare Gases from Separated Minerals of the Mócs Meteorite , 1969 .
[84] J. Zähringer. Rare gases in stony meteorites , 1968 .
[85] D. Lal,et al. Techniques for proper revelation and viewing of etch-tracks in meteoritic and terrestrial minerals , 1968 .
[86] E. Anders,et al. CHEMICAL FRACTIONATIONS IN METEORITES. II. ABUNDANCE PATTERNS AND THEIR INTERPRETATION. , 1967 .
[87] J. Larimer. Chemical fractionations in meteorites—I. Condensation of the elements , 1967 .
[88] P. Price,et al. Origins of fossil charged‐particle tracks in meteorites , 1967 .
[89] C. Stevens,et al. Decay Properties of Plutonium-244, and Comments on its Existence in Nature , 1966, Nature.