Time-Stepping Numerical Simulation of Switched Circuits Within the Nonsmooth Dynamical Systems Approach

The numerical integration of switching circuits is known to be a tough issue when the number of switches is large, or when sliding modes exist. Then, classical analog simulators may behave poorly, or even fail. In this paper, it is shown on two examples that the nonsmooth dynamical systems (NSDS) approach, which is made of: 1) a specific modeling of the piecewise-linear electronic devices (ideal diodes, Zener diodes, transistors); 2) the Moreau's time-stepping scheme; and 3) specific iterative one-step solvers, supersedes simulators of the simulation program with integrated circuit emphasis (SPICE) family and hybrid simulators. An academic example constructed in [Maffezzoni, , IEEE Trans. CADICS, vol 25, no. 11, Nov. 2006], so that the Newton-Raphson scheme does not converge, and the buck converter are used to make extensive comparisons between the NSDS method and other methods of the SPICE family and a hybrid-like method. The NSDS method, implemented in the siconos platform developed at INRIA, proves to be on these two examples much faster and more robust with respect to the model parameter variations.

[1]  J. Vlach,et al.  Analysis and steady state of nonlinear networks with ideal switches , 1995 .

[2]  Khalid Addi,et al.  A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics , 2007 .

[3]  L. Vandenberghe,et al.  The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits , 1989, IEEE International Symposium on Circuits and Systems,.

[4]  Damian Giaouris,et al.  Stability Analysis of the Continuous-Conduction-Mode Buck Converter Via Filippov's Method , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  A. Opal,et al.  Analysis of nonlinear networks with inconsistent initial conditions , 1995 .

[6]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[7]  Vincent Acary,et al.  Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems , 2010, Syst. Control. Lett..

[8]  D. Biolek,et al.  Computer Simulation of Continuous-Time and Switched Circuits: Limitations of SPICE-Family Programs and Pending Issues , 2007, 2007 17th International Conference Radioelektronika.

[9]  B. Brogliato,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[10]  A. Opal,et al.  Modern CAD methods for analysis of switched networks , 1997 .

[11]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[12]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[13]  Vincent Acary,et al.  The nonsmooth dynamical systems approach for the analog simulation of switched circuits within the Siconos framework , 2009 .

[14]  Vincent Acary,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[15]  Michel Saint Jean,et al.  The non-smooth contact dynamics method , 1999 .

[16]  W. Heemels,et al.  Consistency of a time-stepping method for a class of piecewise-linear networks , 2002 .

[17]  Paolo Maffezzoni,et al.  Event-Driven Time-Domain Simulation of Closed-Loop Switched Circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[18]  Domine M. W. Leenaerts On linear dynamic complementary systems , 1999 .

[19]  Hilding Elmqvist,et al.  Object-Oriented and Hybrid Modeling in Modelica , 2001 .

[20]  J. Moreau Numerical aspects of the sweeping process , 1999 .

[21]  Vincent Acary,et al.  Higher order Moreau’s sweeping process: mathematical formulation and numerical simulation , 2008, Math. Program..

[22]  Henry Shu-Hung Chung,et al.  Fast computer-aided simulation of switching power regulators based on progressive analysis of the switches' state , 1994 .

[23]  Vincent Acary,et al.  Toward higher order event-capturing schemes and adaptive time-step strategies for nonsmooth multibody systems , 2009 .

[24]  Vincent Acary,et al.  Implicit Euler numerical simulations of sliding mode systems , 2009 .

[25]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[26]  S. Billups Algorithms for complementarity problems and generalized equations , 1996 .

[27]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[28]  Michael C. Ferris,et al.  QPCOMP: A quadratic programming based solver for mixed complementarity problems , 1997, Math. Program..

[29]  Christoph Glocker,et al.  Models of non‐smooth switches in electrical systems , 2005, Int. J. Circuit Theory Appl..

[30]  Patrice Marcotte,et al.  AN EXTENDED DESCENT FRAMEWORK FOR MONOTONE VARIATIONAL INEQUITIES. , 1993 .

[31]  Christoph Glocker,et al.  Non-smooth modelling of electrical systems using the flux approach , 2007 .

[32]  Francisco Facchinei,et al.  A Theoretical and Numerical Comparison of Some Semismooth Algorithms for Complementarity Problems , 2000, Comput. Optim. Appl..

[33]  Peter Maißer,et al.  Modelling Electromechanical Systems with Electrical Switching Components Using the Linear Complementarity Problem , 2005 .

[34]  Leon O. Chua,et al.  Canonical piecewise-linear analysis , 1983 .

[35]  Masao Fukushima,et al.  Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems , 1992, Math. Program..

[36]  V. Acary,et al.  An introduction to Siconos , 2007 .

[37]  Jong-Shi Pang,et al.  An inexact NE/SQP method for solving the nonlinear complementarity problem , 1992, Comput. Optim. Appl..

[38]  P. Marcotte,et al.  An extended descent framework for variational inequalities , 1994 .

[39]  J. J.,et al.  Numerical aspects of the sweeping process , 1999 .

[40]  P. Lin,et al.  Analysis of piecewise-linear resistive networks using complementary pivot theory , 1981 .

[41]  Enric Fossas,et al.  Generalized discontinuous conduction modes in the complementarity formalism , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[42]  Francisco Facchinei,et al.  A semismooth equation approach to the solution of nonlinear complementarity problems , 1996, Math. Program..

[43]  A. Opal,et al.  Computer methods for switched circuits , 2003 .

[44]  Jong-Shi Pang,et al.  NE/SQP: A robust algorithm for the nonlinear complementarity problem , 1993, Math. Program..

[45]  Xinghuo Yu,et al.  Complex Discretization Behaviors of a Simple Sliding-Mode Control System , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[46]  Leon O. Chua,et al.  Canonical piecewise-linear analysis- II: Tracing driving-point and transfer characteristics , 1985 .

[47]  M. Kanat Camlibel,et al.  Linear Passive Networks With Ideal Switches: Consistent Initial Conditions and State Discontinuities , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[48]  Vincent Acary,et al.  The Non-Smooth Approach applied to simulating Integrated Circuits and Power Electronics Evolution of electronic circuit simulators towards fast-SPICE performance , 2006 .

[49]  Domine M. W. Leenaerts,et al.  Piecewise Linear Modeling and Analysis , 1998 .

[50]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[51]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[52]  Michael C. Ferris,et al.  A Comparison of Large Scale Mixed Complementarity Problem Solvers , 1997, Comput. Optim. Appl..

[53]  L. Vandenberghe,et al.  The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits , 1989 .

[54]  Vincent Acary,et al.  Siconos: A Software Platform for Modeling, Simulation, Analysis and Control of Nonsmooth Dynamical Systems , 2007 .

[55]  Daniel Goeleven,et al.  Existence and Uniqueness for a Linear Mixed Variational Inequality Arising in Electrical Circuits with Transistors , 2008 .

[56]  Patrice Marcotte,et al.  Modified descent methods for solving the monotone variational inequality problem , 1993, Oper. Res. Lett..

[57]  J. Moreau Evolution problem associated with a moving convex set in a Hilbert space , 1977 .

[58]  Jirí Vlach,et al.  Analysis of switched networks , 1992, Int. J. Circuit Theory Appl..

[59]  L. Chua,et al.  A global representation of multidimensional piecewise-linear functions with linear partitions , 1978 .

[60]  M. Çamlibel,et al.  A New Perspective for Modeling Power Electronics Converters: Complementarity Framework , 2009, IEEE Transactions on Power Electronics.

[61]  Kartikeya Mayaram,et al.  Computer-aided circuit analysis tools for RFIC simulation: algorithms, features, and limitations , 2000 .

[62]  S. Dirkse,et al.  The path solver: a nommonotone stabilization scheme for mixed complementarity problems , 1995 .

[63]  R. Sargent,et al.  An efficient implementation of the Lemke algorithm and its extension to deal with upper and lower bounds , 1978 .

[64]  Michael C. Ferris,et al.  A Pivotal Method for Affine Variational Inequalities , 1996, Math. Oper. Res..

[65]  Simone Bächle,et al.  Index reduction for differential-algebraic equations in circuit simulation , 2004 .

[66]  Christoph Glocker Models of non-smooth switches in electrical systems: Research Articles , 2005 .

[67]  T. Rutherford MILES: A Mixed Inequality and nonLinear Equation Solver , 1993 .

[68]  Khalid Addi,et al.  A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems: applications in electronics , 2011, Math. Program..