Phase I Analysis for Autocorrelated Processes

There has been recent interest in statistical process control for autocorrelated processes. Previous researchers have not distinguished models of autocorrelated common-cause variation from the actual behavior of baseline data. Standard estimators of common-cause parameters can be severely biased when assignable causes are present. A new estimation method given here overcomes this difficulty for the first-order autoregressive common-cause model. The method is illustrated with real data sets and assessed via simulation.

[1]  G. C. Tiao,et al.  Random Level-Shift Time Series Models, ARIMA Approximations, and Level-Shift Detection , 1990 .

[2]  Nien Fan Zhang,et al.  A statistical control chart for stationary process data , 1998 .

[3]  Douglas C. Montgomery,et al.  A Discussion on Statistically-Based Process Monitoring and Control , 1997 .

[4]  Roger M. Sauter,et al.  Introduction to Statistical Quality Control (2nd ed.) , 1992 .

[5]  Douglas C. Montgomery,et al.  Some Statistical Process Control Methods for Autocorrelated Data , 1991 .

[6]  B. W. Ang,et al.  A SPC Procedure for Detecting Level Shifts of Autocorrelated Processes , 1998 .

[7]  Thomas P. Ryan,et al.  The estimation of sigma for an X chart: MR/d2 or S/c4? , 1990 .

[8]  Josef Schmee,et al.  Outliers in Statistical Data (2nd ed.) , 1986 .

[9]  Herbert Moskowitz,et al.  Control Charts in the Presence of Data Correlation , 1992 .

[10]  Wai Keung Li A goodness-of-fit test in robust time series modelling , 1988 .

[11]  Lon-Mu Liu,et al.  Joint Estimation of Model Parameters and Outlier Effects in Time Series , 1993 .

[12]  George C. Runger,et al.  Considerations in the monitoring of autocorrelated and independent data , 1997 .

[13]  Oscar H. Bustos,et al.  Robust Estimates for ARMA Models , 1986 .

[14]  Benjamin M. Adams,et al.  Combined Control Charts for Forecast-Based Monitoring Schemes , 1996 .

[15]  George C. Runger,et al.  Model-Based and Model-Free Control of Autocorrelated Processes , 1995 .

[16]  T. Harris,et al.  Statistical process control procedures for correlated observations , 1991 .

[17]  Benjamin M. Adams,et al.  An evaluation of forecast-based quality control schemes , 1994 .

[18]  J. Macgregor,et al.  Duality Between the Control of Processes Subject to Randomly Occurring Deterministic Disturbances and ARIMA Stochastic Disturbances , 1984 .

[19]  Alberto Luceño,et al.  Performance of discrete feedback adjustment schemes with dead band, under stationary versus nonstationary stochastic disturbance , 1998 .

[20]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[21]  Herbert Moskowitz,et al.  Run-Length Distributions of Special-Cause Control Charts for Correlated Processes , 1994 .

[22]  S. A. Vander Wiel,et al.  Monitoring processes that wander using integrated moving average models , 1996 .

[23]  George C. Runger,et al.  Statistical process control using level crossings , 1994 .

[24]  Russell A. Boyles ESTIMATING COMMON-CAUSE SIGMA IN THE PRESENCE OF SPECIAL CAUSES , 1997 .