The Gauss-Bonnet topological scalar in the Geometric Trinity of Gravity

The Gauss-Bonnet topological scalar is presented in metric-teleparallel formalism as well as in the symmetric and general teleparallel formulations. In all of the aforementioned frameworks, the full expressions are provided explicitly in terms of torsion, non-metricity and Levi-Civita covariant derivative. The number of invariant terms of this form is counted and compared with the number which can appear in the corresponding effective field theory. Although the difference in this number is not very large, it is found that the Gauss-Bonnet invariant excludes some of the effective field theory terms. This result sheds new light on how General Relativity symmetries can be maintained at higher order in teleparallel theories: this fact appears to be highly nontrivial in the teleparallel formulation. The importance of the so-called ``pseudo-invariant'' theories like $f(T)$- and $f(T,T_\mathcal{G})$-gravity is further discussed in the context of teleparallel Gauss-Bonnet gravity.

[1]  S. Capozziello,et al.  Minisuperspace quantum cosmology in f(Q) gravity , 2023, The European Physical Journal C.

[2]  S. Räsänen,et al.  Stability of non-degenerate Ricci-type Palatini theories , 2022, Journal of Cosmology and Astroparticle Physics.

[3]  E. Saridakis,et al.  General effective field theory of teleparallel gravity , 2022, Classical and Quantum Gravity.

[4]  S. Capozziello,et al.  Slow-roll inflation in $f(Q)$ non-metric gravity , 2022, 2209.06670.

[5]  S. Capozziello,et al.  Comparing equivalent gravities: common features and differences , 2022, The European Physical Journal C.

[6]  R. D’Agostino,et al.  Late-time constraints on modified Gauss-Bonnet cosmology , 2022, General Relativity and Gravitation.

[7]  T. Koivisto,et al.  Energy and entropy in the geometrical trinity of gravity , 2022, Physical Review D.

[8]  S. Shankaranarayanan,et al.  Modified theories of gravity: Why, how and what? , 2022, General Relativity and Gravitation.

[9]  A. Golovnev,et al.  Contemplating the fate of modified gravity , 2022, 2203.16610.

[10]  E. Saridakis,et al.  Perturbations in non-flat cosmology for f(T) gravity , 2022, The European Physical Journal C.

[11]  T. Koivisto,et al.  Lost in translation: The Abelian affine connection (in the coincident gauge) , 2022, International Journal of Geometric Methods in Modern Physics.

[12]  A. Golovnev,et al.  Lorentz gauge-invariant variables in torsion-based theories of gravity , 2022, Physical Review D.

[13]  K. Chakravarti,et al.  Constraining the topological Gauss-Bonnet coupling from GW150914 , 2022, Physical Review D.

[14]  A. Sanyal,et al.  The issue of Branched Hamiltonian in F(T) Teleparallel Gravity , 2022, International Journal of Modern Physics D.

[15]  Mingzhe Li,et al.  Ghost instability in the teleparallel gravity model with parity violations , 2022, Physics Letters B.

[16]  R. Percacci,et al.  Metric-Affine Gravity as an effective field theory , 2021, Annals of Physics.

[17]  V. Oikonomou,et al.  Ghost-free F(R,G) gravity , 2021, Nuclear Physics B.

[18]  M. Hendry,et al.  Teleparallel gravity: from theory to cosmology , 2021, Reports on progress in physics. Physical Society.

[19]  S. Capozziello,et al.  Exact solutions in higher-dimensional Lovelock and AdS 5 Chern-Simons gravity , 2021, Journal of Cosmology and Astroparticle Physics.

[20]  T. Koivisto,et al.  Accidental Gauge Symmetries of Minkowski Spacetime in Teleparallel Theories , 2021, Universe.

[21]  A. Paliathanasis,et al.  Cosmological solutions and growth index of matter perturbations in f(Q) gravity , 2021, Physical Review D.

[22]  A. Golovnev,et al.  Nontrivial Minkowski backgrounds in f(T) gravity , 2021 .

[23]  S. Capozziello,et al.  Noether symmetries and quantum cosmology in extended teleparallel gravity , 2021, International Journal of Geometric Methods in Modern Physics.

[24]  C. Pfeifer,et al.  Review of the Hamiltonian analysis in teleparallel gravity , 2020, International Journal of Geometric Methods in Modern Physics.

[25]  S. Capozziello,et al.  Equivalence of nonminimally coupled cosmologies by Noether symmetries , 2020, International Journal of Modern Physics D.

[26]  M. Gurses,et al.  Comment on"Einstein-Gauss-Bonnet Gravity in 4-Dimensional Space-Time'' , 2020, 2009.13508.

[27]  S. Capozziello,et al.  Tracing the cosmic history by Gauss-Bonnet gravity , 2020, 2008.09856.

[28]  Fabio D’Ambrosio,et al.  ADM formulation and Hamiltonian analysis of Coincident General Relativity , 2020, 2007.03261.

[29]  J. M. Nester,et al.  Local symmetries and physical degrees of freedom in f(T) gravity: A Dirac-Hamiltonian constraint analysis , 2020, Physical Review D.

[30]  J. Jim'enez,et al.  Minkowski space in $f(T)$ gravity , 2020, 2004.07536.

[31]  V. Oikonomou,et al.  Rectifying Einstein-Gauss-Bonnet inflation in view of GW170817 , 2020, Nuclear Physics B.

[32]  R. Ferraro,et al.  Pseudoinvariance and the extra degree of freedom inf(T)gravity , 2020, Physical Review D.

[33]  Francesco Bajardi,et al.  Higher Dimensional Static and Spherically Symmetric Solutions in Extended Gauss-Bonnet Gravity , 2019, Symmetry.

[34]  Petar Mitri'c Canonical Structure of the Teleparallel Equivalent of General Relativity , 2019, 1910.02810.

[35]  T. Koivisto,et al.  General teleparallel quadratic gravity , 2019, Physics Letters B.

[36]  Yi-Fu Cai,et al.  Model-independent Reconstruction of f(T) Gravity from Gaussian Processes , 2019, The Astrophysical Journal.

[37]  J. Jim'enez,et al.  Non-linear obstructions for consistent new general relativity , 2019, Journal of Cosmology and Astroparticle Physics.

[38]  V. Oikonomou,et al.  Viable inflationary models in a ghost-free Gauss–Bonnet theory of gravity , 2019, The European Physical Journal C.

[39]  V. Oikonomou,et al.  Viable inflationary models in a ghost-free Gauss–Bonnet theory of gravity , 2019, The European Physical Journal C.

[40]  J. Jim'enez,et al.  Cosmology in f(Q) geometry , 2019, 1906.10027.

[41]  Chunshan Lin,et al.  Einstein-Gauss-Bonnet Gravity in Four-Dimensional Spacetime. , 2019, Physical review letters.

[42]  S. Mukohyama,et al.  Minimally modified gravity: a Hamiltonian construction , 2019, Journal of Cosmology and Astroparticle Physics.

[43]  S. Capozziello,et al.  Extended gravity cosmography , 2019, International Journal of Modern Physics D.

[44]  T. Koivisto,et al.  The canonical frame of purified gravity , 2019, International Journal of Modern Physics D.

[45]  L. Heisenberg,et al.  The Geometrical Trinity of Gravity , 2019, Universe.

[46]  C. Boehmer,et al.  Teleparallel theories of gravity: illuminating a fully invariant approach , 2018, Classical and Quantum Gravity.

[47]  J. Aumont,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[48]  S. Banerjee,et al.  Dynamics of inflation and dark energy from F(R,G) gravity , 2018, Nuclear Physics B.

[49]  S. Capozziello,et al.  Observational constraints on Gauss–Bonnet cosmology , 2018, International Journal of Modern Physics D.

[50]  S. Capozziello,et al.  Dynamical analysis on f(R,G) cosmology , 2018, 1802.02572.

[51]  L. Heisenberg,et al.  Coincident general relativity , 2017, Physical Review D.

[52]  S. Capozziello,et al.  Noether symmetries in Gauss–Bonnet-teleparallel cosmology , 2016, The European physical journal. C, Particles and fields.

[53]  C. Böhmer,et al.  Modified teleparallel theories of gravity: Gauss–Bonnet and trace extensions , 2016, The European Physical Journal C.

[54]  S. Capozziello,et al.  f(T) teleparallel gravity and cosmology , 2015, Reports on progress in physics. Physical Society.

[55]  V. Oikonomou Singular Bouncing Cosmology from Gauss-Bonnet Modified Gravity , 2015, 1509.05827.

[56]  P. González,et al.  Teleparallel Equivalent of Lovelock Gravity , 2015, 1508.01174.

[57]  S. Capozziello,et al.  Cosmological inflation in F(R,G) gravity , 2015, 1503.04659.

[58]  E. Saridakis,et al.  Teleparallel equivalent of Gauss-Bonnet gravity and its modifications , 2014, 1404.2249.

[59]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[60]  Miao Li,et al.  Degrees of freedom of f(T) gravity , 2011, 1105.5934.

[61]  J. Barrow,et al.  f(T) gravity and local Lorentz invariance , 2010, 1010.1041.

[62]  R. Olea,et al.  Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space , 2010, 1009.5763.

[63]  E. Elizalde,et al.  ΛCDM epoch reconstruction from F(R, G) and modified Gauss–Bonnet gravities , 2010, 1001.3636.

[64]  S. Tsujikawa,et al.  Solar system constraints on f(G) gravity models , 2009, 0907.1830.

[65]  E. Copeland,et al.  Cosmological Constraints on $f(G)$ Dark Energy Models , 2009, 0903.4610.

[66]  G. Kofinas,et al.  Universal Kounterterms in Lovelock AdS gravity , 2008, 0806.1197.

[67]  R. Olea,et al.  Counterterms in dimensionally continued AdS gravity , 2007, 0706.4460.

[68]  J. Barrow,et al.  Cosmology of modified Gauss-Bonnet gravity , 2007, 0705.3795.

[69]  M. M. Sheikh-Jabbari,et al.  Lovelock gravity at the crossroads of Palatini and metric formulations , 2007, 0705.1879.

[70]  E. Elizalde,et al.  Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem , 2005, hep-th/0601008.

[71]  I. Neupane,et al.  Towards inflation and dark energy cosmologies from modified Gauss–Bonnet theory , 2005, hep-th/0512262.

[72]  S. Nojiri,et al.  Modified Gauss–Bonnet theory as gravitational alternative for dark energy , 2005, hep-th/0508049.

[73]  S. Giddings Gravity and Strings , 2005, hep-ph/0501080.

[74]  J. Zanelli,et al.  Lovelock-Cartan theory of gravity , 1991 .

[75]  Nester,et al.  Canonical analysis of the one-parameter teleparallel theory. , 1988, Physical review. D, Particles and fields.

[76]  K. Hayashi,et al.  New General Relativity , 1979 .

[77]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .

[78]  J. W. York ROLE OF CONFORMAL THREE-GEOMETRY IN THE DYNAMICS OF GRAVITATION. , 1972 .

[79]  D. Lovelock The Einstein Tensor and Its Generalizations , 1971 .

[80]  S. Capozziello,et al.  f ( G ) Noether cosmology , 2020 .

[81]  F.,et al.  Role of Conformal Three-Geometry in the Dynamics of Gravitation , 2011 .

[82]  J. M. Nester,et al.  Acausal PGT modes and the nonlinear constraint effect , 1998 .

[83]  ournal of C osmology and A stroparticle P hysics J Towards inflation and dark energy cosmologies from modified Gauss–Bonnet theory , 2022 .