A 3.4 dB NF k‐band LNA with a tapped capacitor matching network in 65 nm CMOS technology

This article proposes a tapped capacitor network for low‐noise amplifier (LNA) input matching which can provide much broader bandwidth than traditional ones. According to the design, the implemented LNA can realize noise match and power match simultaneously, which will broaden LNA's bandwidth without introducing larger noise than traditional ones. In addition, input pad parasitic capacitance can be absorbed by the network. Then a k‐band LNA with the matching network designed in 65 nm CMOS technology is shown to demonstrate the performance of the matching network. The tested results show that frequency band of S11 less than −10 dB is about 17 GHz and minimum NF is about 3.4 dB. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:146–153, 2015.

[1]  Gabriel M. Rebeiz,et al.  A 16-24 GHz CMOS SOI LNA with 2.2 dB Mean Noise Figure , 2013, 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[2]  Gang Liu,et al.  Broadband Millimeter-Wave LNAs (47–77 GHz and 70–140 GHz) Using a T-Type Matching Topology , 2013, IEEE Journal of Solid-State Circuits.

[3]  Ming-Ching Kuo,et al.  A 1.2-V 5.2-mW 20–30-GHz Wideband Receiver Front-End in 0.18-$\mu{\hbox {m}}$ CMOS , 2012, IEEE Transactions on Microwave Theory and Techniques.

[4]  Ahmad Mirzaei,et al.  A blocker-tolerant wideband noise-cancelling receiver with a 2dB noise figure , 2012, 2012 IEEE International Solid-State Circuits Conference.

[5]  Jason Cong,et al.  An 8Gb/s/pin 4pJ/b/pin Single-T-Line dual (base+RF) band simultaneous bidirectional mobile memory I/O interface with inter-channel interference suppression , 2012, 2012 IEEE International Solid-State Circuits Conference.

[6]  Jason Cong,et al.  An 8.4Gb/s 2.5pJ/b mobile memory I/O interface using simultaneous bidirectional Dual (Base+RF) band signaling , 2011, 2011 IEEE International Solid-State Circuits Conference.

[7]  Yo-Sheng Lin,et al.  Analysis and Design of a 1.6–28-GHz Compact Wideband LNA in 90-nm CMOS Using a $ \pi $-Match Input Network , 2010, IEEE Transactions on Microwave Theory and Techniques.

[8]  Harish Krishnaswamy,et al.  A 4-channel 4-beam 24-to-26GHz spatio-temporal RAKE radar transceiver in 90nm CMOS for vehicular radar applications , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[9]  Han-Su Kim,et al.  Effects of Parasitic Capacitance, External Resistance, and Local Stress on the RF Performance of the Transistors Fabricated by Standard 65-nm CMOS Technologies , 2008, IEEE Transactions on Electron Devices.

[10]  M. Tiebout,et al.  A low power 24 GHz LNA in 0.13 μm CMOS , 2008, 2008 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems.

[11]  Marc Tiebout,et al.  A 2kV ESD-Protected 18GHz LNA with 4dB NF in 0.13μm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[12]  Vipul Jain,et al.  A CMOS 22-29GHz Receiver Front-End for UWB Automotive Pulse-Radars , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[13]  S.P. Voinigescu,et al.  The Invariance of Characteristic Current Densities in Nanoscale MOSFETs and Its Impact on Algorithmic Design Methodologies and Design Porting of Si(Ge) (Bi)CMOS High-Speed Building Blocks , 2006, IEEE Journal of Solid-State Circuits.

[14]  P. Soussan,et al.  24 GHz LNA in 90nm RF-CMOS with high-Q above-IC inductors , 2005, Proceedings of the 31st European Solid-State Circuits Conference, 2005. ESSCIRC 2005..

[15]  I. Gresham,et al.  Ultra-wideband radar sensors for short-range vehicular applications , 2004, IEEE Transactions on Microwave Theory and Techniques.

[16]  Trung-Kien Nguyen,et al.  CMOS low-noise amplifier design optimization techniques , 2004, IEEE Transactions on Microwave Theory and Techniques.

[17]  A. Gupta,et al.  708 Diamagnetic susceptibility of C 12 H 10 Cr , 2007 .

[18]  B. Razavi,et al.  A 60-GHz CMOS receiver front-end , 2006, IEEE Journal of Solid-State Circuits.