Ornithine is the central intermediate in the arginine degradative pathway and its regulation in Bacillus subtilis

[1]  J. Rappsilber,et al.  Protein complexes in cells by AI‐assisted structural proteomics , 2023, bioRxiv.

[2]  H. Link,et al.  L-Proline Synthesis Mutants of Bacillus subtilis Overcome Osmotic Sensitivity by Genetically Adapting L-Arginine Metabolism , 2022, Frontiers in Microbiology.

[3]  Michael Y. Galperin,et al.  COG database update: focus on microbial diversity, model organisms, and widespread pathogens , 2020, Nucleic Acids Res..

[4]  U. Völker,et al.  Essentiality of c-di-AMP in Bacillus subtilis: Bypassing mutations converge in potassium and glutamate homeostasis , 2020, bioRxiv.

[5]  C. Gross,et al.  Resistance to serine in Bacillus subtilis: identification of the serine transporter YbeC and of a metabolic network that links serine and threonine metabolism , 2020, bioRxiv.

[6]  M. Buck,et al.  Bacterial Enhancer Binding Proteins—AAA+ Proteins in Transcription Activation , 2020, Biomolecules.

[7]  D. Hertel,et al.  Sustained sensing in potassium homeostasis: Cyclic di-AMP controls potassium uptake by KimA at the levels of expression and activity , 2019, The Journal of Biological Chemistry.

[8]  H. Link,et al.  Adaptation of Bacillus subtilis to Life at Extreme Potassium Limitation , 2017, mBio.

[9]  O. Kuipers,et al.  Control of the Diadenylate Cyclase CdaS in Bacillus subtilis , 2014, The Journal of Biological Chemistry.

[10]  Lope A. Flórez,et al.  Mutational activation of the RocR activator and of a cryptic rocDEF promoter bypass loss of the initial steps of proline biosynthesis in Bacillus subtilis. , 2014, Environmental microbiology.

[11]  O. Kuipers,et al.  The YmdB Phosphodiesterase Is a Global Regulator of Late Adaptive Responses in Bacillus subtilis , 2013, Journal of bacteriology.

[12]  R. Dixon,et al.  The Role of Bacterial Enhancer Binding Proteins as Specialized Activators of σ54-Dependent Transcription , 2012, Microbiology and Molecular Reviews.

[13]  J. Stülke,et al.  A High-Frequency Mutation in Bacillus subtilis: Requirements for the Decryptification of the gudB Glutamate Dehydrogenase Gene , 2011, Journal of bacteriology.

[14]  V. Shingler Signal sensory systems that impact σ⁵⁴ -dependent transcription. , 2011, FEMS microbiology reviews.

[15]  C. Condon,et al.  Bacillus subtilis ribonucleases J1 and J2 form a complex with altered enzyme behaviour , 2010, Molecular microbiology.

[16]  Bastien Chevreux,et al.  The Origins of 168, W23, and Other Bacillus subtilis Legacy Strains , 2008, Journal of bacteriology.

[17]  Fabian M. Commichau,et al.  Glutamate Metabolism in Bacillus subtilis: Gene Expression and Enzyme Activities Evolved To Avoid Futile Cycles and To Allow Rapid Responses to Perturbations of the System , 2008, Journal of bacteriology.

[18]  S. Phillips,et al.  Structure of the C-terminal effector-binding domain of AhrC bound to its corepressor L-arginine. , 2007, Acta crystallographica. Section F, Structural biology and crystallization communications.

[19]  R. Dixon,et al.  Domain Architectures of σ54-Dependent Transcriptional Activators , 2003 .

[20]  A. Matin,et al.  Insufficient Expression of the ilv-leu Operon Encoding Enzymes of Branched-Chain Amino Acid Biosynthesis Limits Growth of a Bacillus subtilis ccpA Mutant , 2002, Journal of bacteriology.

[21]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[22]  A. Sonenshein,et al.  Role and Regulation of Bacillus subtilisGlutamate Dehydrogenase Genes , 1998, Journal of bacteriology.

[23]  S Baumberg,et al.  Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: novel positioning and DNA‐mediated assembly of a transcriptional activator at catabolic sites , 1997, Molecular microbiology.

[24]  M. Débarbouillé,et al.  Role of the transcriptional activator RocR in the arginine‐degradation pathway of Bacillus subtilis , 1997, Molecular microbiology.

[25]  W. Hillen,et al.  Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250 , 1997, Journal of bacteriology.

[26]  Peter G. Stockley,et al.  A binding site for activation by theBacillus subtilis AhrC protein, a repressor/activator of arginine metabolism , 1995, Molecular and General Genetics MGG.

[27]  M. Débarbouillé,et al.  Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. , 1995, Journal of molecular biology.

[28]  G. Rapoport,et al.  Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis , 1995, Journal of bacteriology.

[29]  M. Débarbouillé,et al.  Interactions of wild-type and truncated LevR of Bacillus subtilis with the upstream activating sequence of the levanase operon. , 1994, Journal of molecular biology.

[30]  P Glaser,et al.  RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators , 1994, Journal of bacteriology.

[31]  T. Ishikawa,et al.  Cloning and sequencing of the genes involved in the conversion of 5-substituted hydantoins to the corresponding L-amino acids from the native plasmid of Pseudomonas sp. strain NS671 , 1992, Journal of bacteriology.

[32]  M. Débarbouillé,et al.  The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from gram-negative bacteria. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[33]  M. Débarbouillé,et al.  Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. , 1990, Journal of molecular biology.

[34]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[35]  I. Issaly,et al.  Control of ornithine carbamoyltransferase activityby arginase in Bacillus subtilis. , 1974, European journal of biochemistry.

[36]  W. Brill,et al.  Regulation of Proline Degradation in Salmonella typhimurium , 1970, Journal of bacteriology.

[37]  H. Strecker PURIFICATION AND PROPERTIES OF RAT LIVER ORNITHINE DELTA-TRANSAMINASE. , 1965, The Journal of biological chemistry.

[38]  V. Shingler Signal sensory systems that impact r 54 -dependent transcription , 2011 .

[39]  W. Hillen,et al.  Mycoplasma pneumoniae HPr kinase/phosphorylase. , 2004, European journal of biochemistry.

[40]  R. Parks,et al.  Guanylate kinases from human erythrocytes, hog brain, and rat liver. , 1978, Methods in enzymology.

[41]  T. Ishikawa,et al.  Cloning and Sequencing of the Genes Involved in the Conversion of 5-Substituted Hydantoins to the Corresponding L-Amino Acids from the Native Plasmid of Pseudomonas sp . Strain NS 671 , 2022 .