Review of Methods of Mechanical Digital Design Based on Topology Optimization

The basic mathematical model of topology optimization of continuum structures is introduced at first. Then the authors focus on reviewing the development of PDE methods and optimization algorithms. This paper details the development and applications of Finite Element Method, Boundary Element Method and Finite Volume Method. This paper also illustrates several typical applications and achievements of optimization algorithms, such as Optimality Criteria method, mathematical programming method and intelligent algorithm. Based on our research, this paper finally summarizes the process of the structural topology optimization and describes the directions of the topology optimization in the field of mechanical digital design.

[1]  N. Olhoff,et al.  An investigation concerning optimal design of solid elastic plates , 1981 .

[2]  Krister Svanberg,et al.  A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..

[3]  L. Schmit,et al.  Some Approximation Concepts for Structural Synthesis , 1974 .

[4]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[5]  Pierre Duysinx,et al.  Dual approach using a variant perimeter constraint and efficient sub-iteration scheme for topology optimization , 2003 .

[6]  Rohit Kanaglekar Development and Implementation of Discontinuous Galerkin (DG) Finite Element Methods for Topology Optimization , 2005 .

[7]  Yuan Lin,et al.  Topology optimization of the element connections in transducer arrays , 2000, Smart Structures.

[8]  H. Gea,et al.  Topology optimization of nonlinear structures , 2004 .

[9]  George I. N. Rozvany,et al.  DCOC: An optimality criteria method for large systems Part II: Algorithm , 1993 .

[10]  C. Fleury,et al.  Dual methods and approximation concepts in structural synthesis , 1980 .

[11]  Claude Fleury,et al.  Structural shape optimization and convex programming methods , 1996 .

[12]  George I. N. Rozvany,et al.  DCOC: An optimality criteria method for large systems Part I: theory , 1992 .

[13]  Ole Sigmund,et al.  Topology synthesis of large‐displacement compliant mechanisms , 2001 .

[14]  Seonho Cho,et al.  Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures , 2003 .

[15]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[16]  J. Petersson,et al.  Large-scale topology optimization in 3D using parallel computing , 2001 .

[17]  Noboru Kikuchi,et al.  TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS USING THE HOMOGENIZATION METHOD , 1998 .

[18]  Wenhua Chen METHOD OF BOOTSTRAP INTERVAL ESTIMATION FOR PRODUCT RELIABILITY , 2003 .

[19]  J. Korvink,et al.  Adaptive moving mesh level set method for structure topology optimization , 2008 .

[20]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[21]  Ting-Yu Chen,et al.  Fuzzy multiobjective topology optimization , 2000 .

[22]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[23]  N. Kikuchi,et al.  Topological design for vibrating structures , 1995 .

[24]  Necmettin Kaya,et al.  Integrated optimal topology design and shape optimization using neural networks , 2003 .

[25]  William Prager,et al.  Problems of Optimal Structural Design , 1968 .

[26]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[27]  M. Życzkowski,et al.  Problems of Optimal Structural Design , 1988 .

[28]  Ole Sigmund,et al.  Design of multiphysics actuators using topology optimization - Part I: One-material structures , 2001 .

[29]  M. Zhou,et al.  An efficient DCOC algorithm based on high-quality approximations for problems including eigenvalue constraints , 1995 .

[30]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[31]  C. Fleury,et al.  A family of MMA approximations for structural optimization , 2002 .

[32]  Seonho Cho,et al.  Topology design optimization of geometrically non-linear structures using meshfree method , 2006 .

[33]  George I. N. Rozvany,et al.  Plastic design of beams: Optimal locations of supports and steps in yield moment , 1975 .

[34]  Yasuhiko Nakanishi,et al.  Application of homology theory to topology optimization of three-dimensional structures using genetic algorithm , 2001 .

[35]  C. Fleury,et al.  A generalized method of moving asymptotes (GMMA) including equality constraints , 1996 .

[36]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[37]  Kazuhiro Saitou,et al.  Genetic algorithms as an approach to configuration and topology design , 1994, DAC 1993.

[38]  O. Sigmund,et al.  Stiffness design of geometrically nonlinear structures using topology optimization , 2000 .

[39]  M. Beckers,et al.  Topology optimization using a dual method with discrete variables , 1999 .

[40]  M. Géradin,et al.  Optimality criteria and mathematical programming in structural weight optimization , 1978 .

[41]  Noboru Kikuchi,et al.  Optimization of a frame structure subjected to a plastic deformation , 1995 .

[42]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[44]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..