Visualization of modular structures in biological networks

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers.

[1]  Benjamin M. Bolstad,et al.  affy - analysis of Affymetrix GeneChip data at the probe level , 2004, Bioinform..

[2]  Chris North,et al.  An Evaluation of Microarray Visualization Tools for Biological Insight , 2004, IEEE Symposium on Information Visualization.

[3]  Sune Lehmann,et al.  Link communities reveal multiscale complexity in networks , 2009, Nature.

[4]  Helwig Hauser,et al.  Parallel Sets: interactive exploration and visual analysis of categorical data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[5]  Alvis Brazma,et al.  Current approaches to gene regulatory network modelling , 2007, BMC Bioinformatics.

[6]  Cynthia A. Brewer,et al.  ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps , 2003 .

[7]  Wojciech Szpankowski,et al.  Detecting Conserved Interaction Patterns in Biological Networks , 2006, J. Comput. Biol..

[8]  C. Cobbs,et al.  Human cytomegalovirus infection and expression in human malignant glioma. , 2002, Cancer research.

[9]  Hanspeter Pfister,et al.  UpSet: Visualization of Intersecting Sets , 2014, IEEE Transactions on Visualization and Computer Graphics.

[10]  Peter J. Stuckey,et al.  Fast Node Overlap Removal , 2005, GD.

[11]  Martin Graham,et al.  A Survey of Multiple Tree Visualisation , 2010, Inf. Vis..

[12]  Matthew A. Hibbs,et al.  Visualization of omics data for systems biology , 2010, Nature Methods.

[13]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[14]  Thomas Lengauer,et al.  Improved scoring of functional groups from gene expression data by decorrelating GO graph structure , 2006, Bioinform..

[15]  Mary Czerwinski,et al.  Design Study of LineSets, a Novel Set Visualization Technique , 2011, IEEE Transactions on Visualization and Computer Graphics.

[16]  Fabian J. Theis,et al.  Visualizing edge-edge relations in graphs , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[17]  Ludovic Cottret,et al.  Metabolic network visualization eliminating node redundance and preserving metabolic pathways , 2007, BMC Systems Biology.

[18]  P. Casarosa,et al.  Human Cytomegalovirus Chemokine Receptor US28-induced Smooth Muscle Cell Migration Is Mediated by Focal Adhesion Kinase and Src* , 2003, Journal of Biological Chemistry.

[19]  Dieter Schmalstieg,et al.  Caleydo: connecting pathways and gene expression , 2009, Bioinform..

[20]  Bettina Speckmann,et al.  KelpFusion: A Hybrid Set Visualization Technique , 2013, IEEE Transactions on Visualization and Computer Graphics.

[21]  Keith Andrews,et al.  Visual Graph Comparison , 2009, 2009 13th International Conference Information Visualisation.

[22]  Daniel W. Archambault,et al.  Fully Automatic Visualisation of Overlapping Sets , 2009, Comput. Graph. Forum.

[23]  Bettina Speckmann,et al.  Subdivision Drawings of Hypergraphs , 2009, GD.

[24]  Lars Linsen,et al.  VANLO - Interactive visual exploration of aligned biological networks , 2009, BMC Bioinformatics.

[25]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[26]  David S. Johnson,et al.  Hypergraph planarity and the complexity of drawing venn diagrams , 1987, J. Graph Theory.

[27]  Petra Mutzel,et al.  Optimal Compaction of Orthogonal Grid Drawings , 1999, IPCO.

[28]  Romain Bourqui,et al.  Pathway Preserving Representation of Metabolic Networks , 2011, Comput. Graph. Forum.

[29]  Rob Leurs,et al.  Constitutive ß-Catenin Signaling by the Viral Chemokine Receptor US28 , 2012, PloS one.

[30]  Axel Kowald,et al.  Systems Biology in Practice: Concepts, Implementation and Application , 2005 .

[31]  R. Radinsky,et al.  Activation of c-Met in colorectal carcinoma cells leads to constitutive association of tyrosine-phosphorylated β-catenin , 2004, Clinical & Experimental Metastasis.

[32]  Jean-Daniel Fekete,et al.  Improving the Readability of Clustered Social Networks using Node Duplication , 2008, IEEE Transactions on Visualization and Computer Graphics.

[33]  Gunnar W. Klau,et al.  eXamine: Exploring annotated modules in networks , 2014, BMC Bioinformatics.

[34]  Peter D. Karp,et al.  The EcoCyc and MetaCyc databases , 2000, Nucleic Acids Res..

[35]  Heidrun Schumann,et al.  Supporting the Visual Analysis of Dynamic Networks by Clustering associated Temporal Attributes , 2013, IEEE Transactions on Visualization and Computer Graphics.

[36]  Rob Leurs,et al.  Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis , 2006, Proceedings of the National Academy of Sciences.

[37]  Tim Dwyer,et al.  Untangling Euler Diagrams , 2010, IEEE Transactions on Visualization and Computer Graphics.

[38]  John T. Stasko,et al.  Network-based visual analysis of tabular data , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[39]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.

[40]  Jos B. T. M. Roerdink,et al.  Visualizing Genome Expression and Regulatory Network Dynamics in Genomic and Metabolic Context , 2008, Comput. Graph. Forum.

[41]  Matthew Suderman,et al.  Tools for visually exploring biological networks , 2007, Bioinform..

[42]  Jarke J. van Wijk,et al.  Multivariate Network Exploration and Presentation: From Detail to Overview via Selections and Aggregations , 2014, IEEE Transactions on Visualization and Computer Graphics.

[43]  Peter Gierschik,et al.  Constitutive Inositol Phosphate Formation in Cytomegalovirus-Infected Human Fibroblasts Is due to Expression of the Chemokine Receptor Homologue pUS28 , 2003, Journal of Virology.

[44]  V. Lacroix,et al.  An Introduction to Metabolic Networks and Their Structural Analysis , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[45]  Daniel W. Archambault,et al.  ImPrEd: An Improved Force‐Directed Algorithm that Prevents Nodes from Crossing Edges , 2011, Comput. Graph. Forum.

[46]  R. Karp,et al.  From the Cover : Conserved patterns of protein interaction in multiple species , 2005 .

[47]  G. Wagner,et al.  The road to modularity , 2007, Nature Reviews Genetics.

[48]  Chris North,et al.  Visualizing Biological Pathways: Requirements Analysis, Systems Evaluation and Research Agenda , 2005, Inf. Vis..

[49]  Kim Marriott,et al.  A generic algorithm for layout of biological networks , 2009, BMC Bioinformatics.

[50]  Alexandru Telea,et al.  Visualization of areas of interest in software architecture diagrams , 2006, SoftVis '06.

[51]  B. Rovin,et al.  The expression of the cytomegalovirus chemokine receptor homolog US28 sequesters biologically active CC chemokines and alters IL-8 production. , 2002, Cytokine.

[52]  Jean-Daniel Fekete,et al.  MatrixExplorer: a Dual-Representation System to Explore Social Networks , 2006, IEEE Transactions on Visualization and Computer Graphics.

[53]  Natasa Przulj,et al.  Biological network comparison using graphlet degree distribution , 2007, Bioinform..

[54]  Stephen G. Kobourov,et al.  Group-Level Graph Visualization Taxonomy , 2014, EuroVis.

[55]  Isabel Rojas,et al.  A graph layout algorithm for drawing metabolic pathways , 2001, Bioinform..

[56]  Ilya G. Goldberg,et al.  Modelling data across labs, genomes, space and time , 2006, Nature Cell Biology.

[57]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs: State‐of‐the‐Art and Future Research Challenges , 2011, Eurographics.

[58]  Bettina Speckmann,et al.  On Planar Supports for Hypergraphs , 2009, J. Graph Algorithms Appl..

[59]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[60]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[61]  Yifan Hu,et al.  GMap: Visualizing graphs and clusters as maps , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[62]  Martin Vingron,et al.  A joint model of regulatory and metabolic networks , 2006, BMC Bioinformatics.

[63]  Robert M MacCallum,et al.  An expression map for Anopheles gambiae , 2011, BMC Genomics.

[64]  Jindrich Cinatl,et al.  Oncomodulatory signals by regulatory proteins encoded by human cytomegalovirus: a novel role for viral infection in tumor progression. , 2004, FEMS microbiology reviews.

[65]  Jarke J. van Wijk,et al.  Compressed Adjacency Matrices: Untangling Gene Regulatory Networks , 2012, IEEE Transactions on Visualization and Computer Graphics.

[66]  Gordon K. Smyth,et al.  limma: Linear Models for Microarray Data , 2005 .

[67]  James R. Eagan,et al.  Low-level components of analytic activity in information visualization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[68]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[69]  Peter J. Stuckey,et al.  Exploration of Networks using overview+detail with Constraint-based cooperative layout , 2008, IEEE Transactions on Visualization and Computer Graphics.

[70]  M. Babu,et al.  Investigating transcriptional regulation: from analysis of complex networks to discovery of cis-regulatory elements. , 2009, Methods.

[71]  Ayellet Tal,et al.  Online Dynamic Graph Drawing , 2008, IEEE Transactions on Visualization and Computer Graphics.

[72]  Roberto Therón,et al.  Visualization of Intersecting Groups Based on Hypergraphs , 2010, IEICE Trans. Inf. Syst..

[73]  Bettina Speckmann,et al.  Kelp Diagrams: Point Set Membership Visualization , 2012, Comput. Graph. Forum.

[74]  James Abello,et al.  Matrix Zoom: A Visual Interface to Semi-External Graphs , 2004, IEEE Symposium on Information Visualization.

[75]  Kwan-Liu Ma,et al.  A hybrid space-filling and force-directed layout method for visualizing multiple-category graphs , 2009, 2009 IEEE Pacific Visualization Symposium.

[76]  Illés J. Farkas,et al.  CFinder: locating cliques and overlapping modules in biological networks , 2006, Bioinform..

[77]  M. Sheelagh T. Carpendale,et al.  VisLink: Revealing Relationships Amongst Visualizations , 2007, IEEE Transactions on Visualization and Computer Graphics.

[78]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[79]  Lars Linsen,et al.  Visualization of Aligned Biological Networks: A Survey , 2007, 2007 International Conference on Cyberworlds (CW'07).

[80]  Zhenjun Hu,et al.  VisANT 3.0: new modules for pathway visualization, editing, prediction and construction , 2007, Nucleic Acids Res..

[81]  Michael Lässig,et al.  Local graph alignment and motif search in biological networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Jean-Daniel Fekete,et al.  Task taxonomy for graph visualization , 2006, BELIV '06.

[83]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[84]  JOSEP DÍAZ,et al.  A survey of graph layout problems , 2002, CSUR.

[85]  Benjamin Watson,et al.  Developing and Evaluating Quilts for the Depiction of Large Layered Graphs , 2011, IEEE Transactions on Visualization and Computer Graphics.

[86]  Juha Vesanto,et al.  SOM-based data visualization methods , 1999, Intell. Data Anal..

[87]  Gunnar W. Klau,et al.  A new graph-based method for pairwise global network alignment , 2009, BMC Bioinformatics.

[88]  Falk Schreiber,et al.  High quality visualization of biochemical pathways in BioPath , 2002, Silico Biol..

[89]  David Auber,et al.  Tulip - A Huge Graph Visualization Framework , 2004, Graph Drawing Software.

[90]  Jianzhi Zhang,et al.  In Search of the Biological Significance of Modular Structures in Protein Networks , 2007, PLoS Comput. Biol..

[91]  T. Ideker,et al.  Integrative approaches for finding modular structure in biological networks , 2013, Nature Reviews Genetics.

[92]  Lincoln Stein,et al.  Reactome knowledgebase of human biological pathways and processes , 2008, Nucleic Acids Res..

[93]  Tobias Müller,et al.  Identifying functional modules in protein–protein interaction networks: an integrated exact approach , 2008, ISMB.

[94]  Silvia Miksch,et al.  Visualizing Sets and Set-typed Data: State-of-the-Art and Future Challenges , 2014, EuroVis.

[95]  Peter Rodgers,et al.  Layout metrics for Euler diagrams , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..

[96]  Edward M. Reingold,et al.  Tidier Drawings of Trees , 1981, IEEE Transactions on Software Engineering.

[97]  Feng Luo,et al.  Core and periphery structures in protein interaction networks , 2009, BMC Bioinformatics.

[98]  Jean-Daniel Fekete,et al.  ZAME: Interactive Large-Scale Graph Visualization , 2008, 2008 IEEE Pacific Visualization Symposium.

[99]  Michael Shtutman,et al.  Differential Mechanisms of LEF/TCF Family-Dependent Transcriptional Activation by β-Catenin and Plakoglobin , 2000, Molecular and Cellular Biology.

[100]  Heather J. Ruskin,et al.  Techniques for clustering gene expression data , 2008, Comput. Biol. Medicine.

[101]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[102]  Kresimir Matkovic,et al.  Interactive Visual Analysis of Set-Typed Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[103]  Falk Schreiber,et al.  Dynamic exploration and editing of KEGG pathway diagrams , 2007, Bioinform..

[104]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[105]  A. Wagner The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. , 2001, Molecular biology and evolution.

[106]  Kim Marriott,et al.  IPSep-CoLa: An Incremental Procedure for Separation Constraint Layout of Graphs , 2006, IEEE Transactions on Visualization and Computer Graphics.

[107]  M. A. Westenberg,et al.  Network visualization in cell biology , 2012 .

[108]  Benno Schwikowski,et al.  GOlorize: a Cytoscape plug-in for network visualization with Gene Ontology-based layout and coloring , 2007, Bioinform..

[109]  Van,et al.  A gene-expression signature as a predictor of survival in breast cancer. , 2002, The New England journal of medicine.

[110]  G. Cesareni,et al.  Comparative interactomics: comparing apples and pears? , 2007, Trends in biotechnology.

[111]  Ellen Langemeijer,et al.  The human cytomegalovirus-encoded chemokine receptor US28 promotes angiogenesis and tumor formation via cyclooxygenase-2. , 2009, Cancer research.

[112]  Peter Eades,et al.  Drawing Hypergraphs in the Subset Standard (Short Demo Paper) , 2000, GD.

[113]  Amarnath Gupta,et al.  BiologicalNetworks 2.0 - an integrative view of genome biology data , 2010, BMC Bioinformatics.

[114]  Ben Shneiderman,et al.  Network Visualization by Semantic Substrates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[115]  William J R Longabaugh,et al.  BioTapestry: a tool to visualize the dynamic properties of gene regulatory networks. , 2012, Methods in molecular biology.

[116]  Tamara Munzner,et al.  GrouseFlocks: Steerable Exploration of Graph Hierarchy Space , 2008, IEEE Transactions on Visualization and Computer Graphics.

[117]  Cecilia Soderberg-Naucler,et al.  The Human Cytomegalovirus Chemokine Receptor US28 Mediates Vascular Smooth Muscle Cell Migration , 1999, Cell.

[118]  Frank van Ham,et al.  Using multilevel call matrices in large software projects , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[119]  M. Kanehisa,et al.  A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. , 2000, Nucleic acids research.

[120]  Stefan Bornholdt,et al.  Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .

[121]  Rob Leurs,et al.  Constitutive Signaling of the Human Cytomegalovirus-encoded Chemokine Receptor US28* , 2001, The Journal of Biological Chemistry.

[122]  Michael Jünger,et al.  Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm , 2004, GD.

[123]  Georgios A. Pavlopoulos,et al.  Arena3D: visualization of biological networks in 3D , 2008, BMC Systems Biology.

[124]  Masao Nagasaki,et al.  An efficient biological pathway layout algorithm combining grid-layout and spring embedder for complicated cellular location information , 2010, BMC Bioinformatics.

[125]  Jarke J. van Wijk,et al.  Comparison of Multiple Weighted Hierarchies: Visual Analytics for Microbe Community Profiling , 2011, Comput. Graph. Forum.

[126]  Jürgen Branke,et al.  Dynamic Graph Drawing , 2001, Drawing Graphs.

[127]  Kozo Sugiyama,et al.  Visualization of structural information: automatic drawing of compound digraphs , 1991, IEEE Trans. Syst. Man Cybern..

[128]  Chris T. A. Evelo,et al.  Presenting and exploring biological pathways with PathVisio , 2008, BMC Bioinformatics.

[129]  M. Baitaluk,et al.  IntegromeDB: an integrated system and biological search engine , 2012, BMC Genomics.

[130]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[131]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[132]  John T. Stasko,et al.  OnSet: A Visualization Technique for Large-scale Binary Set Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[133]  Ron Y. Pinter,et al.  Alignment of metabolic pathways , 2005, Bioinform..

[134]  Romain Bourqui,et al.  Visualizing Patterns in Node-link Diagrams , 2012, 2012 16th International Conference on Information Visualisation.

[135]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[136]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[137]  Alexandru Telea,et al.  Towards realism in drawing areas of interest on architecture diagrams , 2009, J. Vis. Lang. Comput..

[138]  Kirby I Bland,et al.  Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer , 2002, The Lancet.

[139]  Martin Graham,et al.  Exploring Multiple Trees through DAG Representations , 2007, IEEE Transactions on Visualization and Computer Graphics.

[140]  Gary D Bader,et al.  How to visually interpret biological data using networks , 2009, Nature Biotechnology.

[141]  T. Ideker,et al.  Modeling cellular machinery through biological network comparison , 2006, Nature Biotechnology.

[142]  Thomas J. Grabowski,et al.  Age-Related Differences in the Dynamic Architecture of Intrinsic Networks , 2014, Brain Connect..

[143]  J.C. Roberts,et al.  State of the Art: Coordinated & Multiple Views in Exploratory Visualization , 2007, Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007).

[144]  Hiroaki Kitano,et al.  Foundations of systems biology , 2001 .

[145]  Miguel Rocha,et al.  Modeling formalisms in Systems Biology , 2011, AMB Express.

[146]  R. Khanna,et al.  Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. , 2004, The Lancet. Infectious diseases.

[147]  Jur P. van den Berg,et al.  The visibility--voronoi complex and its applications , 2005, EuroCG.

[148]  Pooja Mittal,et al.  A novel signaling pathway impact analysis , 2009, Bioinform..

[149]  Fan Chung Graham,et al.  Drawing Power Law Graphs Using a Local/Global Decomposition , 2007, Algorithmica.

[150]  Marco Siderius,et al.  HCMV-Encoded Chemokine Receptor US28 Mediates Proliferative Signaling Through the IL-6–STAT3 Axis , 2010, Science Signaling.

[151]  Peter Eades,et al.  A Heuristic for Graph Drawing , 1984 .

[152]  Bang Wong,et al.  Pathline: A Tool For Comparative Functional Genomics , 2010, Comput. Graph. Forum.

[153]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[154]  A. Barabasi,et al.  Functional and topological characterization of protein interaction networks , 2004, Proteomics.

[155]  Tamara Munzner,et al.  Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context , 2008, IEEE Transactions on Visualization and Computer Graphics.

[156]  Vinh Nguyen,et al.  Visual Integration of Quantitative Proteomic Data, Pathways, and Protein Interactions , 2010, IEEE Transactions on Visualization and Computer Graphics.

[157]  C. Söderberg-Nauclér,et al.  Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? , 2006, Journal of internal medicine.

[158]  Ulrik Brandes,et al.  Path-based supports for hypergraphs , 2010, J. Discrete Algorithms.

[159]  Reinhard Schneider,et al.  A survey of visualization tools for biological network analysis , 2008, BioData Mining.

[160]  Silvia Miksch,et al.  Radial Sets: Interactive Visual Analysis of Large Overlapping Sets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[161]  Dianne P. O'Leary,et al.  Why Do Hubs in the Yeast Protein Interaction Network Tend To Be Essential: Reexamining the Connection between the Network Topology and Essentiality , 2008, PLoS Comput. Biol..

[162]  Dmitry A Rodionov,et al.  Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. , 2007, Chemical reviews.

[163]  Andreas Kerren,et al.  A Novel Radial Visualization Approach for Undirected Hypergraphs , 2013, EuroVis.

[164]  Paul J. Schweitzer,et al.  Problem Decomposition and Data Reorganization by a Clustering Technique , 1972, Oper. Res..

[165]  John T. Stasko,et al.  Toward a Deeper Understanding of the Role of Interaction in Information Visualization , 2007, IEEE Transactions on Visualization and Computer Graphics.

[166]  Philippe Castagliola,et al.  A Comparison of the Readability of Graphs Using Node-Link and Matrix-Based Representations , 2004, IEEE Symposium on Information Visualization.

[167]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[168]  Falk Schreiber,et al.  VANTED: A system for advanced data analysis and visualization in the context of biological networks , 2006, BMC Bioinformatics.

[169]  P. Bork,et al.  Literature mining for the biologist: from information retrieval to biological discovery , 2006, Nature Reviews Genetics.

[170]  Susana Vinga,et al.  A Survey on Methods for Modeling and Analyzing Integrated Biological Networks , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[171]  Pierre Dragicevic,et al.  GeneaQuilts: A System for Exploring Large Genealogies , 2010, IEEE Transactions on Visualization and Computer Graphics.

[172]  Kenta Nakai,et al.  BTBS: database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics , 2004, Nucleic Acids Res..

[173]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[174]  Falk Schreiber,et al.  2.5D Visualisation of Overlapping Biological Networks , 2008, J. Integr. Bioinform..

[175]  Xingming Zhao,et al.  Computational Systems Biology , 2013, TheScientificWorldJournal.

[176]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[177]  Alexander Wolff,et al.  Towards an evaluation of quality for names placement methods , 2002, Int. J. Geogr. Inf. Sci..

[178]  Yao Sun,et al.  RuleBender: integrated modeling, simulation and visualization for rule-based intracellular biochemistry , 2012, BMC Bioinformatics.

[179]  Daniel Weiskopf,et al.  Visualizing Fuzzy Overlapping Communities in Networks , 2013, IEEE Transactions on Visualization and Computer Graphics.

[180]  David Haussler,et al.  Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM , 2010, Bioinform..

[181]  Walter Didimo,et al.  Topology-Driven Force-Directed Algorithms , 2010, GD.

[182]  Peter D. Karp,et al.  Automated Drawing of Metabolic Pathways , 2000 .

[183]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[184]  Ramana Rao,et al.  The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information , 1994, CHI '94.

[185]  Amarnath Gupta,et al.  BiologicalNetworks: visualization and analysis tool for systems biology , 2006, Nucleic Acids Res..

[186]  M. Sheelagh T. Carpendale,et al.  Bubble Sets: Revealing Set Relations with Isocontours over Existing Visualizations , 2009, IEEE Transactions on Visualization and Computer Graphics.

[187]  Ulrik Brandes,et al.  Visualizing Internet Evolution on the Autonomous Systems Level , 2007, GD.

[188]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[189]  Tamara Munzner,et al.  TopoLayout: Multilevel Graph Layout by Topological Features , 2007, IEEE Transactions on Visualization and Computer Graphics.

[190]  Mario Albrecht,et al.  On Open Problems in Biological Network Visualization , 2009, GD.

[191]  Trevor Paterson,et al.  Visualising Errors in Animal Pedigree Genotype Data , 2011, Comput. Graph. Forum.

[192]  David Harel,et al.  A fast multi-scale method for drawing large graphs , 2000, AVI '00.

[193]  Michael Schroeder,et al.  Unraveling Protein Networks with Power Graph Analysis , 2008, PLoS Comput. Biol..