Electronic-structure-based investigation of magnetism in the Fe8 molecular magnet

We have performed density-functional-based electronic structure calculations on a single Fe8 molecular nanomagnet. Our calculated total moments and local moments are in excellent agreement with experiment. By including spin–orbit coupling we determine the easy, medium, and hard axes and find the ordering of the principle axes also agrees with experiment. From our calculated anisotropy Hamiltonian, we calculate the oscillations in the tunnel splittings and compare to the experimental results.

[1]  Friedman,et al.  Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. , 1996, Physical review letters.

[2]  A. Caneschi,et al.  Magnetization Density in an Iron(III) Magnetic Cluster. A Polarized Neutron Investigation , 1999 .

[3]  L. Thomas,et al.  Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets , 1996, Nature.

[4]  S. Khanna,et al.  Electronic and geometrical structure and magnetic ordering in passivated Mn12O12-acetate nanomagnets , 1999 .

[5]  Anupam Garg,et al.  Topologically Quenched Tunnel Splitting in Spin Systems without Kramers' Degeneracy , 1993 .

[6]  Jackson,et al.  Variational mesh for quantum-mechanical simulations. , 1990, Physical review. B, Condensed matter.

[7]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[8]  A. Barra,et al.  Superparamagnetic-like behavior in an octanuclear iron cluster , 1996 .

[9]  A. Freeman,et al.  First-principles determinations of magneto-crystalline anisotropy and magnetostriction in bulk and thin-film transition metals , 1998 .

[10]  Mark R. Pederson,et al.  Optimization of Gaussian basis sets for density-functional calculations , 1999 .

[11]  A. Barra,et al.  High-Frequency EPR Spectra of [Fe8O2(OH)12(tacn)6]Br8: A Critical Appraisal of the Barrier for the Reorientation of the Magnetization in Single-Molecule Magnets , 2000, cond-mat/0002386.

[12]  J. H. Van Vleck,et al.  On the Anisotropy of Cubic Ferromagnetic Crystals , 1937 .

[13]  G. Schneider,et al.  Role of orbital polarization in calculations of the magnetic anisotropy , 2000 .

[14]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[15]  R. Feynman Forces in Molecules , 1939 .

[16]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[17]  W. Ching,et al.  Calculation of spin-reorientation temperature in Nd2Fe14B , 1991 .

[18]  Landau-Zener method to study quantum phase interference of Fe8 molecular nanomagnets (invited) , 1999, cond-mat/9912123.

[19]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[20]  Jackson,et al.  Accurate forces in a local-orbital approach to the local-density approximation. , 1990, Physical review. B, Condensed matter.

[21]  W. Wernsdorfer,et al.  Quantum phase interference and parity effects in magnetic molecular clusters , 1999, Science.

[22]  G. Huttner,et al.  Hydrolysis Products of the Monomeric Amine Complex (C6H15N3)FeCl3: The Structure of the Octameric Iron(III) Cation of {[(C6H15N3)6Fe8(μ3‐O)2(μ2‐OH)12]Br7(H2O)}Br·8H2O , 1984 .

[23]  C. Sangregorio,et al.  QUANTUM TUNNELING OF THE MAGNETIZATION IN AN IRON CLUSTER NANOMAGNET , 1997 .

[24]  Jansen Magnetic anisotropy in density-functional theory. , 1988, Physical review. B, Condensed matter.

[25]  A. Caneschi,et al.  Neutron Spectroscopy for the Magnetic Anisotropy of Molecular Clusters , 1998 .

[26]  Mark R. Pederson,et al.  Magnetic anisotropy barrier for spin tunneling in Mn 12 O 12 molecules , 1999 .

[27]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .