The optical absorption edge of brookite TiO2

Abstract The optical absorption edge of brookite TiO2 was measured at room temperature, using natural crystals. The measurements extend up to 3.54 eV in photon energy and 2000 cm−1 in absorption coefficient. The observed absorption edge is broad and extends throughout the visible, quite different from the steep edges of rutile and anatase. No evidence of a direct gap is seen in the range measured. The spectral dependence of the absorption strongly suggests that the brookite form of TiO2 is an indirect-gap semiconductor with a bandgap of about 1.9 eV.

[1]  J. Pascual,et al.  Fine structure in the intrinsic absorption edge of Ti O 2 , 1978 .

[2]  Jinlong Yang,et al.  Wet Electrons at the H2O/TiO2(110) Surface , 2005, Science.

[3]  B. K. Rao,et al.  Physics and Chemistry of Finite Systems: From Clusters to Crystals , 1992 .

[4]  Jean-François Guillemoles,et al.  Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol–gel method , 2002 .

[5]  Renald Schaub,et al.  Oxygen-Mediated Diffusion of Oxygen Vacancies on the TiO2(110) Surface , 2002, Science.

[6]  W. Schade,et al.  Phase transformation in room temperature pulsed laser deposited TiO2 thin films , 2003 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Michael Grätzel,et al.  Dye-Sensitized Solid-State Heterojunction Solar Cells , 2005 .

[9]  G. Jellison,et al.  Spectroscopic ellipsometry of thin film and bulk anatase (TiO2) , 2003 .

[10]  Luigi Cassar,et al.  Photocatalysis of Cementitious Materials: Clean Buildings and Clean Air , 2004 .

[11]  Seshu B. Desu,et al.  Brookite-rich titania films made by pulsed laser deposition , 2000 .

[12]  G. Jellison,et al.  Measurement of the optical functions of uniaxial materials by two-modulator generalized ellipsometry: rutile (TiO(2)). , 1997, Optics letters.

[13]  R. Leonelli,et al.  Optical properties of rutile near its fundamental band gap. , 1995, Physical review. B, Condensed matter.

[14]  S. H. Wemple,et al.  Optical Properties of Perovskite Oxides in Their Paraelectric and Ferroelectric Phases , 1968 .

[15]  Masashi Kawasaki,et al.  Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide , 2001, Science.

[16]  Feng,et al.  Optical properties of ion-implanted GaAs: The observation of finite-size effects in GaAs microcrystals. , 1989, Physical Review B (Condensed Matter).

[17]  Gerald Earle Jellison,et al.  Generalized ellipsometry for materials characterization , 2004 .

[18]  Ching,et al.  Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. , 1995, Physical review. B, Condensed matter.

[19]  Masashi Kawasaki,et al.  Anomalous Hall effect governed by electron doping in a room-temperature transparent ferromagnetic semiconductor , 2004, Nature materials.

[20]  Tang,et al.  Urbach tail of anatase TiO2. , 1995, Physical review. B, Condensed matter.

[21]  D. G. Thomas,et al.  Intrinsic Absorption-Edge Spectrum of Gallium Phosphide , 1966 .

[22]  F. C. Brown,et al.  FINE STRUCTURE IN THE ABSORPTION EDGE OF THE SILVER HALIDES. Technical Note No. 6 , 1961 .

[23]  G. Tompsett,et al.  The Raman spectrum of brookite, TiO2 (Pbca, Z = 8) , 1995 .

[24]  W. Baur Atomabstände und Bindungswinkel im Brookit, TiO2 , 1961 .

[25]  R. Zallen,et al.  Band Structure of Gallium Phosphide from Optical Experiments at High Pressure , 1964 .

[26]  R. Zallen,et al.  Electronic Structure of Crystalline and Amorphous As2S3 and As2Se3 , 1971 .